• Title/Summary/Keyword: Ionization development

Search Result 187, Processing Time 0.026 seconds

Proteomics Approach on Puroindoline Gene of Pre-harvest Sprouting Wheat

  • Kamal, Abu Hena Mostafa;Park, Cheol-Soo;Heo, Hwa-Young;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.205-212
    • /
    • 2009
  • Wheat (Triticum aestivum L.) grain texture is an important determinant of milling properties and end product use. Two linked genes, puroindoline a (PINA) and puroindoline b (PINB), control most of the genetic variation in wheat grain texture. Wheat seed proteins were examined to identify PINA and PINB gene using two pre-harvest sprouting wheat cultivars; Jinpum (resistant) and Keumgang (susceptible).Wheat seed proteins were separated by two-dimensional electrophoresis with IEF gels over pH ranges: pH 3-10. A total of 73 spots were digested with trypsin resulting peptide fragmentation were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS). Mass spectra were automatically processed and searched through NCBInr, SWISS-PORT and MSDB database with mono isotopic masses and complete gene sequence were found by UniProt database. Puroindoline a and puroindoline b that is responsible for grain texture related with baking performance and roughness. Two spots were found Pin b (16.7 kDa) and Pin a (16.3 kDa) in Jinpum compare to seven spots were identified Pin a (16.1 kDa, 16.3 kDa) and Pin b (16.7 kDa, 9.5 kDa and 14.4 kDa) in Keumgang. Some selected spots were identified puroindoline like grain softness protein (16.9 kDa, 17 kDa and 18.1 kDa) in Keumgang. Moreover, to gain a better inferring the identification of puroindoline related proteins using proteomics, we accomplished a complete gene sequence of PINA and PINB gene in pre-harvesting sprouting wheat seeds between resistant (Jinpum) and susceptible (Keumgang).

Development and validation of LC-MS/MS for bioanalysis of hydroxychloroquine in human whole blood

  • Park, Jung Youl;Song, Hyun Ho;Kwon, Young Ee;Kim, Seo Jin;Jang, Sukil;Joo, Seong Soo
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.130-139
    • /
    • 2018
  • This study aimed to analyze a high-performance liquid chromatography (HPLC) separation using a pentafluorophenyl column of parent drug hydroxychloroquine (HCQ) and its active metabolite, desethylhydroxchloroquine (DHCQ) applying to determine bioequivalence of two different formulations administered to patients. A rapid, simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for bioanalysis of HCQ and its metabolite DHCQ in human whole blood using deuterium derivative $hydroxychloroquine-D_4$ as an internal standard (IS). A triple-quadrupole mass spectrometer was operated using electrospray ionization in multiple reaction monitoring (MRM) mode. Sample preparation involves a two-step precipitation of protein techniques. The removed protein blood samples were chromatographed on a pentafluorophenyl (PFP) column ($50mm{\times}4.6mm$, $2.6{\mu}m$) with a mobile phase (ammonium formate solution containing dilute formic acid) in an isocratic mode at a flow rate of 0.45 mL/min. The standard curves were found to be linear in the range of 2 - 500 ng/mL for HCQ; 2 - 2,000 ng/mL for DHCQ in spite of lacking a highly sensitive MS spectrometry system. Results of intra- and inter-day precision and accuracy were within acceptable limits. A run time of 2.2 min for HCQ and 2.03 min for DHCQ in blood sample facilitated the analysis of more than 300 human whole blood samples per day. Taken together, we concluded that the assay developed herein represents a highly qualified technology for the quantification of HCQ in human whole blood for a parallel design bioequivalence study in a healthy male.

Development of a Label-Free LC-MS/MS-Based Glucosylceramide Synthase Assay and Its Application to Inhibitors Screening for Ceramide-Related Diseases

  • Fu, Zhicheng;Yun, So Yoon;Won, Jong Hoon;Back, Moon Jung;Jang, Ji Min;Ha, Hae Chan;Lee, Hae Kyung;Shin, In Chul;Kim, Ju Yeun;Kim, Hee Soo;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2019
  • Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z $588.6{\rightarrow}264.4$ for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625-160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Development of a Beam Source Modeling Approach to Calculate Head Scatter Factors for a 6 MV Unflattened Photon Beam

  • Park, So-Yeon;Choi, Noorie;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.137-144
    • /
    • 2021
  • Purpose: This study aimed to investigate the accuracy of head scatter factor (Sc) by applying a developed multi-leaf collimator (MLC) scatter source model for an unflattened photon beam. Methods: Sets of Sc values were measured for various jaw-defined square and rectangular fields and MLC-defined square fields for developing dual-source model (DSM) and MLC scatter model. A 6 MV unflattened photon beam has been used. Measurements were performed using a 0.125 cm3 cylindrical ionization chamber and a mini phantom. Then, the parameters of both models have been optimized, and Sc has been calculated. The DSM and MLC scatter models have been verified by comparing the calculated values to the three Sc set measurement values of the jaw-defined field and the two Sc set measurement values of MLC-defined fields used in the existing modeling, respectively. Results: For jaw-defined fields, the calculated Sc using the DSM was consistent with the measured Sc value. This demonstrates that the DSM was properly optimized and modeled for the measured values. For the MLC-defined fields, the accuracy between the calculated and measured Sc values with the addition of the MLC scatter source appeared to be high, but the only use of the DSM resulted in a significantly bigger differences. Conclusions: Both the DSM and MLC models could also be applied to an unflattened beam. When considering scattered radiation from the MLC by adding an MLC scatter source model, it showed a higher degree of agreement with the actual measured Sc value than when using only DSM in the same way as in previous studies.

Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function (광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성)

  • Kang, You-an;Jin, Sang-Keun;Ko, Jonghyun;Choi, Yeung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

Determination of thyroid hormones by solid-phase extraction using high performance liquid chromatograph/diode array detector/electro-spray ionization mass spectrometry in urine samples (HPLC/DAD/ESI-MS 및 고체상 추출법을 이용한 뇨시료중 갑상선 호르몬 분석)

  • Kwak, Sun Young;Moon, Myeong Hee;Pyo, Heesoo
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.519-528
    • /
    • 2006
  • An analytical method for the determination of thyroid hormones in urine samples has been studied by using solid-phase extraction and high-performance liquid chromatography/diode array detector/electro-spray mass spectrometry. Seven thyroid hormones were successfully separated by gradient elution on the reverse phase Hypersil ODS column (4.6 mm I.D., 100 mm length, particle size $5{\mu}m$) with ammonium formate buffer and acetonitrile, and UV spectra and mass fragment could be confirmed. The extraction recoveries of thyroid hormones in the urine samples (pH 3) were in the range of 89.0-113.1% with solid-phase extraction by C18, followed by elution with 4 ml of methanol/ammonium hydroxide (9 : 1). The calibration curves showed good linearity with the correlation coefficients ($r^2$) varying from 0.992 to 0.998 and the detection limits of all analytes were obtained in the range of 2-4 ng/ml (3.8-13.0 pmol/ml).

Protein Patterns on a Corpus Luteum during Pregnancy in Korean Native Cows

  • Chung, Hak-Jae;You, Dong-Min;Kim, Hyo-Ju;Choi, Hye-Young;Lee, Myeong-Suk;Kim, Jin-Bum;Lee, Suck-Dong;Park, Jung-Yong;Lee, Myeung-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.263-270
    • /
    • 2010
  • Luteal cells produce progesterone that supports pregnancy. Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism. In the present study, the corpus luteum (CL) in early pregnancy established from luteal phase and pregnant phase was analyzed. The first study determined progesterone changes in the bovine CL at day 19 (early maternal recognition period) and day 90 in mid-pregnancy and compared them to the CL from day 12 of the estrous cycle. CL alternation was tested using two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Comparing CL from luteal phase to those from pregnant phase counterparts, significant changes in expression level were found in 23 proteins. Of these proteins 17 were not expressed in pregnant phase CL but expressed in luteal phase counterpart, whereas, the expression of the other 6 proteins was limited only in pregnant phase CL. Among these proteins, vimentin is considered to be involved in regulation of post-implantation development. In particular, vimentin may be used as marker for CL development during pregnancy because the expression level changed considerably in pregnant phase CL tissue compared with its luteal phase counterpart. Data from 2-DE suggest that protein expression was disorientated in mid pregnancy from luteal phase, but these changes was regulated with progression of pregnancy. These findings demonstrate CL development during mid-pregnancy from luteal phase and suggest that alternations of specific CL protein expression may be involved in maintenance of pregnancy.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Identification and Safety Assessment of Cucumber Mosaic Virus Coat Protein in Genetically Modified Pepper (Capsicum annuum)

  • Kim, Eunji;Noh, Hee Min;Phat, Chanvorleak;Lee, Gung Pyo;Kim, Jun Hong;Park, Tae-Sung;Lee, Chan
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.924-939
    • /
    • 2016
  • The great economic losses caused by Cucumber mosaic virus (CMV) infection of peppers has led to the development of genetically modified (GM) CMV-resistant peppers. We developed virus-resistant pepper plants using Agrobacterium tumefaciens -mediated transformation. The expressed recombinant protein was purified using nickel-nitrilotriacetic acid resin and immunoaffinity chromatography, and purity was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Immunoblot analysis revealed the purified CMV coat protein (CMV-CP) had a molecular mass of 25 kDa. After in-gel digestion and desalting, the internal peptide fragments of CMV-CP were sequenced by matrix-assisted laser desorption/ionization-time of flight. Most GM pepper and Escherichia coli BL21 internal peptides had identical peptide sequences and contained 137 of 183 whole peptides in CMV-CP. A quantitative enzyme-linked immunosorbent assay was performed to detect CMV-resistant GM peppers. We also provide basic information about the expressed protein in GM peppers for further safety assessment. The contents of soluble protein and CMV-CP were measured in GM and control peppers cultivated in three different areas of Korea. Statistical significance in terms of cultivation areas, harvest times, generations, and plant tissue origin were determined based on a P value of 0.05. The highest amount of CMV-CP was detected at the seedling stage from plant grown in each region. T3 and T5 showed significantly different levels of CMV-CP from T4 in leaves in the whorl stage. No statistical differences were observed among GM peppers at different stages of maturity in any cultivation area. The results from this study contribute to the safety evaluation of newly designed CMV-resistant GM peppers and provide a standard against which to compare other virus-resistant GM peppers.