• Title/Summary/Keyword: Ionic equation

Search Result 85, Processing Time 0.024 seconds

SDRE controller considering Multi Observer applied to nonlinear IPMC model

  • Bernat, Jakub;Kolota, Jakub;Stepien, Slawomir
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Ionic Polymer Metal Composite (IPMC) is an electroactive polymer (EAP) and a promising candidate actuator for various potential applications mainly due to its flexible, low voltage/power requirements, small and compact design, and lack of moving parts. Although widely used in industry, this material requires accurate numerical models and knowledge of optimal control methods. This paper presents State-Dependent Riccati Equation (SDRE) approach as one of rapidly emerging methodologies for designing nonlinear controllers. Additionally, the present paper describes a novel method of Multi HGO Observer design. In the proposed design, the calculated position of the IPMC strip accurately tracks the target position, which is illustrated by the experiments. Numerical results and comparison with experimental data are presented and the effectiveness of the proposed control strategy is verified in experiments.

Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell (고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

Calculation of ion distribution in an RF plasma etching system using monte carlo methods (몬테카를로 계산 방식에 의한 RF 플라즈마 에칭 시스템에서의 이온 분포 계산)

  • 반용찬;이제희;윤상호;권오섭;김윤태;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.54-62
    • /
    • 1998
  • In a plasma etching system, ions become an important parameter in determining the wafer topography which depends on both the physical sputtering mechanism and the chemically enhanced reaction. this paper reports the energy and angular distributions of ions across the plasma sheath using a monte carlo method. The ion distribution is mainly affected by the magnitude of the sheath voltage and by the collision in the sheath. Furthemore, the local potential distribution in a plamsa sheath has been determined by solving the poisson's equation. In th is work, ionic collisions were cosidered in terms of both charge exchange and momentum transfer. The three-dimensional distributions of ions were calculated with varying the input process conditions in the plasma reactor.

  • PDF

Modeling of IPMC Actuator for the Endoscopic Microcapsule (캡슐형 내시경 로봇의 IPMC 액추에이터 모델링)

  • Oh, Sin-Jong;Kim, Hun-Mo;Choi, Hyouk-Ryeol;Jeon, Jae-Wook;Nam, Jae-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.660-666
    • /
    • 2001
  • The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage $(1\sim3\;V)$ to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system.

  • PDF

Development of Fuzzy control and Modeling of IPMC Actuator for the Endoscopic Microcapsule (캡슐형 내시경 로봇의 IPMC 액추에이터 모델링 및 퍼지 제어 알고리듬 개발에 대한 연구)

  • 오신종;김훈모;최혁렬;전재욱;남재도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2003
  • The Ionic Polymer Metal Composite (IPMC) is one of the electroactive polymer (EAP) have potential application as micro actuators. In this study, IPMC is used as actuator to control of the direction for the endscopic microcapsule. Because it bends in water and wet conditions by applying a low voltage (1∼3 V) to its surfaces. The basic characteristics and the static modeling of IPMC are discussed. Also the dynamic modeling is performed using the Lagrange' equation. Computer simulation results show that the performed modeling guarantee similarity of actual system.

Electrostatic Adsorption of Uniformly Charged Electrolytes within Like-charged Electrodes

  • Jang, Seanea;Shin, Ghi Ryang;Kim, Soon-Chul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1315-1323
    • /
    • 2018
  • The classical-fluids density functional theory has been developed for studying the structural and the electrical properties of electrolyte solutions containing uniformly charged hard-spherical ions. The modified fundamental-measure theory has been used to evaluate the hard-sphere contribution. The mean-field approximation has been employed to calculate the cross correlation between the hard sphere contribution and the Coulomb interaction. The Poisson equation for ions carrying charges that are spatially separated has been solved. The present theory shows reasonably good agreement with the corresponding Monte Carlo simulation results. The calculated results show that the attraction between like-charged planar surfaces is the result of the intra-ionic correlation and depends strongly on the ion size, valence, mole fraction, and charge distribution of electrolytes.

Study on Metal Cupferrate Complex (Part III) Study on Distribution Ratio of Hydrogen Cupferrate in $H_2O-CHCl_3$ System (Metal Cupferrate Complex 에 關한 硏究 (第 3 報) $H_2O$-Chloroform 系에서의 Hydrogen Cupferrate 의 分配係數에 關한 硏究)

  • Si-Joong Kim;Doo-Soon Shin
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.283-287
    • /
    • 1963
  • The distribution ratio of hydrogen cupferrate in $H_2O-CHCl_3$ system was considered as a function of pH ($HClO_4$), ionic strength ($NaClO_4$), and cupferron concentration in perchloric acid media, respectively. The values were independent upon pH (1.50∼3.00 range) and ionic strength (0.1∼2.00 range), but they increased as increasing the cupferron concentration in the acidic media. At the infinite dilution, the thermodynamic distribution ratio between chloroform and aqueous phase was 120. 0. The activity coefficients of hydrogen cupferrate in chloroform solution were determined by the distribution ratio. This activity coefficient may be calculated by using the empirical equation, $-log\;f_{CHCl3}=0.1285C_{CHCl3}+{7.775C^2}_{CHCl3}$ which represents the experimental data quite well for the solution in 0.1 mole/l order of hydrogen cupferrate concentration.

  • PDF

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer (평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구)

  • Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.543-553
    • /
    • 1992
  • Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

  • PDF

Heat transport characteristics by heat generation of electrochemical reactions in proton exchange membrane fuel cell (고분자전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3377-3382
    • /
    • 2007
  • In proton exchange membrane fuel cell, the heat is generated at the catalyst layer as result of exothermic electrochemical reaction. This heat increases temperature of gas diffusion layer and membrane whose conductivity is very sensitive to humidity, function of temperature. So it is very important to analysis heat transfer through fuel cell to maintain temperature at specified range. In this paper numerical simulation was done including reversible, irreversible, ionic resistance, water formation loss to source term of energy equation. Results show that irreversible and water formation loss contributes mainly to energy source term and as current density increases, all of energy source terms become increased and Nusselt number is increased as results of more heat generation. Particularly irreversible loss is found to be predominant among the all energy source and water formation at cathode channel influences the temperature distribution of fuel cell greatly.

  • PDF