DOI QR코드

DOI QR Code

Electrostatic Adsorption of Uniformly Charged Electrolytes within Like-charged Electrodes

  • Jang, Seanea (Department of Physics, Andong National University) ;
  • Shin, Ghi Ryang (Department of Physics, Andong National University) ;
  • Kim, Soon-Chul (Department of Physics, Andong National University)
  • Received : 2018.04.03
  • Accepted : 2018.05.24
  • Published : 2018.11.15

Abstract

The classical-fluids density functional theory has been developed for studying the structural and the electrical properties of electrolyte solutions containing uniformly charged hard-spherical ions. The modified fundamental-measure theory has been used to evaluate the hard-sphere contribution. The mean-field approximation has been employed to calculate the cross correlation between the hard sphere contribution and the Coulomb interaction. The Poisson equation for ions carrying charges that are spatially separated has been solved. The present theory shows reasonably good agreement with the corresponding Monte Carlo simulation results. The calculated results show that the attraction between like-charged planar surfaces is the result of the intra-ionic correlation and depends strongly on the ion size, valence, mole fraction, and charge distribution of electrolytes.

Keywords

Acknowledgement

Supported by : Andong National University

References

  1. L. Guldbrand, B. Jonsson, H.Wennerstrom and P. Linse, J. Chem. Phys. 80, 2221 (1984). https://doi.org/10.1063/1.446912
  2. L. B. Bhuiyan, V. Vlachy and C. W. Outhwaite, Int. Rev. Phys. Chem. 21, 1 (2002). https://doi.org/10.1080/01442350110078842
  3. S. May, A. Iglic, J. Rescic, S. Maset and K. Bohinc, J. Phys. Chem. B 112, 1685 (2008). https://doi.org/10.1021/jp073355e
  4. I. Szilagyi, A. Sadeghpour and M. Borkovec, Langmuir 28, 6211 (2012) https://doi.org/10.1021/la300542y
  5. A. Sadeghpour, I. Szilagyi and M. Borkovec, Z. Phys. Chem. 226, 597 (2012). https://doi.org/10.1524/zpch.2012.0259
  6. E. F. Marques, O. Regev, A. Khan, M. Miguel and B. Lindman, Macromolecules 32, 6626 (1999) https://doi.org/10.1021/ma990350+
  7. F. Bordi, C. Cametti, S. Sennato and D. Viscomi, J. Chem. Phys. 126, 024902 (2007). https://doi.org/10.1063/1.2423028
  8. D. Gottwald, C. N. Likos, G. Kahl and H. Lowen, Phys. Rev. Lett. 92, 068301 (2004). https://doi.org/10.1103/PhysRevLett.92.068301
  9. D. Frydel and Y. Levin, J. Chem. Phys. 138, 174901 (2013) https://doi.org/10.1063/1.4802994
  10. D. Frydel, J. Chem. Phys. 145, 184703 (2016). https://doi.org/10.1063/1.4967257
  11. K. Bohinc, G. V. Bossa, S. Gavryushov and S. May, J. Chem. Phys. 145, 234901 (2016). https://doi.org/10.1063/1.4968210
  12. S. Jang, G. R. Shin and S-C. Kim, J. Chem. Phys. 147, 036101 (2017). https://doi.org/10.1063/1.4995990
  13. K. Bohinc, J. Rescic and S. May, J. Mol. Liquids 228, 201 (2017). https://doi.org/10.1016/j.molliq.2016.10.087
  14. D. Frydel and Y. Levin, J. Chem. Phys. 148, 024904 (2018). https://doi.org/10.1063/1.5006947
  15. R. Roth, R. Evans, A. Lang and G. J. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002). https://doi.org/10.1088/0953-8984/14/46/313
  16. Y. Yu and J. Wu, J. Chem. Phys. 117, 10156 (2002)
  17. Y. Yu and J. Wu, J. Chem. Phys. 118, 3835 (2003). https://doi.org/10.1063/1.1539840
  18. E.Waisman and J. L. Lebowitz, J. Chem. Phys. 56, 3086 (1972) https://doi.org/10.1063/1.1677644
  19. G. Rickayzen, Mol. Phys. 97, 721 (1999). https://doi.org/10.1080/00268979909482871
  20. L. Blum, Mol. Phys. 30, 1529 (1975) https://doi.org/10.1080/00268977500103051
  21. L. Blum and J. S. Hye, J. Phys. Chem. 81, 1311 (1977). https://doi.org/10.1021/j100528a019
  22. K. Hiroike, Mol. Phys. 33, 1195 (1977). https://doi.org/10.1080/00268977700101011
  23. D. Henderson, L. Blum and J. L. Lobowitz, J. Electroanal. Chem. 102, 315 (1979) https://doi.org/10.1016/S0022-0728(79)80459-3
  24. W. Olivares and D. A. McQuarrie, J. Phys. Chem. 84, 863 (1980) https://doi.org/10.1021/j100445a014
  25. Z. Tang, L. E. Scriven and H. T. Davis, J. Chem. Phys. 97, 9258 (1992). https://doi.org/10.1063/1.463301
  26. Y. Rosenfeld, Phys. Rev. A 35, 938 (1987) https://doi.org/10.1103/PhysRevA.35.938
  27. J. Stein, D. Shalitin and Y. Rosenfeld, Phys. Rev. A 37, 4854 (1988). https://doi.org/10.1103/PhysRevA.37.4854
  28. A. R. Denton, Phys. Rev. E 67, 011804 (2003). https://doi.org/10.1103/PhysRevE.67.011804
  29. J. Stein, D. Shaliton and Y. Rosenfeld, Phys. Rev. A 37, 4854 (1988) https://doi.org/10.1103/PhysRevA.37.4854
  30. A. R. Denton, Phys. Rev. E 67, 011804 (2003). https://doi.org/10.1103/PhysRevE.67.011804
  31. H. M. Manzanilla-Granados, F. Jimenez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 115, 12094 (2011) https://doi.org/10.1021/jp2032324
  32. H. Manzanilla-Granados and M. Lozada-Cassou, J. Phys. Chem. B 117, 11812 (2013). https://doi.org/10.1021/jp403313k
  33. J. Gonzalez-Calderon, M. Chavez-Paez, E. Gonzalez-Tovar and M. Lozada-Cassou, arXiv: 1712.00467v1 [cond-mat.soft] (2017).
  34. K. Kiyohara, M. Yamagata and M. Ishikawa, J. Chem. Phys. 144, 134701 (2016), https://doi.org/10.1063/1.4944927
  35. S. Zhou, S. Lamperski and M. Sokoowska, J Stat. Mech.: Theory and experiment. 073207 (2017).
  36. D. Gillespie, J. Phys. Chem. Letts. 2, 1178 (2011) https://doi.org/10.1021/jz2001908
  37. Z. Wang, Phys. Rev. E 93, 012605 (2016). https://doi.org/10.1103/PhysRevE.93.012605
  38. A. Schlaich, E. W. Knapp and R. R. Netz, Phys. Rev. Letts. 117, 048001 (2016). https://doi.org/10.1103/PhysRevLett.117.048001