• 제목/요약/키워드: Ion-beam sputtering

검색결과 298건 처리시간 0.033초

스퍼터링 법에 의한 BSCCO 단결정 성장의 부착 계수 향상 (Enhanced sticking coefficient in the BSCCO single crystal grown by the sputtering method)

  • 천민우;양승호;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.585-586
    • /
    • 2005
  • BSCCO thin films were fabricated by an ion beam sputtering method with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element in BSCCO film formation was observed to show a unique temperature dependence; it was almost a constant value of 0.49 below about $730^{\circ}C$ and decreased linearly over about $730^{\circ}C$. In contrast, Sr and Ca, displayed no such remarkable temperature dependence. This behavior of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi2O3. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

집속이온빔의 공정조건이 실리콘 가공에 미치는 영향 (The Parametric Influence on Focused Ion Beam Processing of Silicon)

  • 김준현;송춘삼;김종형;장동영;김주현
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

단일 이온빔 스퍼터링법을 이용한 AIN 박막의 증착 (Deposition of AIN Thin Films by Single Ion Beam Sputtering)

  • 이재빈;주한용;이용의;김형준
    • 한국세라믹학회지
    • /
    • 제34권2호
    • /
    • pp.209-215
    • /
    • 1997
  • Reactive Single Ion Beam Sputtering 방법을 이용하여 AIN박막을 증착하고 물성을 분석하였다. 반응성 가스로 질소 가스 또는 암모니아 가스를 이용하였다. 증착된 AIN박막의 구조적, 화학적, 광학적 물성을 분석하기 위해 XRD, GAXRD, TEM, SEM, XPS, UV/VIS spectrophotometer, FT-IR등을 이용하였다. XRD, GAXRD분석결과에 의하면 증착된 모든 AIN박막은 비정질이었으나 TEM분석결과에서는 비정질 속에 육방정의 AIN미세결정들이 분포해 있었다. 그리고 FT-IR과 XPS분석을 통하여 Al-N결합을 확인하였으며, 화학양론적인 조성이 됨에 따라 UV-VIS spectrophotometery 분석에서 투광성이 증가하며 광학적 밴드갭은 6.2eV까지 증가함을 확인하였다. 또한 단면과 표면 형상관찰에서는, 반응성 가스로 질소 가스나 암모니아 가스에 관계없이, 결정입계가 전혀 관찰되지 않는 아주 평활한 현상이었으며 굴절율은 1.6~1.7의 값을 갖는다.

  • PDF

집속이온빔(Focused Ion Beam)을 이용한 3차원 나노가공

  • 박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.11-11
    • /
    • 2004
  • 나노기술은 크게 2가지 접근방법을 가진다. 하나는 위에서 아래로(Top-Down)라는 관점으로 벌크물질로부터 이온빔 등을 이용해 이를 작게 잘라가는 방식이며, 다른 하나는 아래에서 위로(Bottom-Up) 방식으로 재질을 구성하는 분자를 재구성해 원하는 물성 및 특성을 가지도록 만드는 방법이다. 이 두 가지 접근 방법은 원하는 결과를 얻기 위해 상호 보완적으로 사용되기도 한다. Top-Down방식의 대표적인 기기로는 접속이온빔 장치(FIB, Focused Ion Beam)를 등 수 있으며, Bottom-Up방식의 대표적인 기기로는 SPM(Scanning Probe Microscope)을 들 수 있다.(중략)

  • PDF

반응성 이온빔 스퍼터링법에 의해 제조된 ATO박막 (ATO Thin Films Prepared by Reactive lout Beam Sputtering)

  • 구창영;김경중;김광호;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 2000
  • Antimony doped tin oxide (ATO) thin films were deposited at room temperature by reactive ion-beam sputter deposition (IBSD) technique in oxidizing atmosphere utilizing Sb and Sn metal targets. Effect of Sb doping concentration, film thickness and heat treatment on electrical and optical properties was investigated. The thickness of as-deposited films was controlled approximately to 1500 $\AA$ or 2000$\AA$, and Sb concentration to 10.8 and 14.9 wt%, as determined by SEM and XPS analyses. Heat treatment was performed at the temperature from 40$0^{\circ}C$ to 80$0^{\circ}C$ in flowing $O_2$or forming gas. The resulting ATO films showed widely changing electrical resistivity and optical transmittance values in the visible spectrum depending on the composition, thickness and firing condition.

  • PDF

이온빔을 이용한 마이크로/나노 가공: 모델링 (Ion Beam Induced Micro/Nano Fabrication: Modeling)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.108-115
    • /
    • 2007
  • 3D nano-scale manufacturing is an important aspect of advanced manufacturing technology. A key element in ability to view, fabricate, and in some cases operate micro-devices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. The use of ions is the only way to fabricate directly micro-/ nano-scale structures. It has been utilized as a direct-write method for lithography, implantation, and milling of functional devices. The simulation of ion beam induced physical and chemical phenomena based on sound mathematical models associated with simulation methods is presented for 3D micro-/nanofabrication. The results obtained from experimental investigation and characteristics of ion beam induced direct fabrication will be discussed.

Physical properties of ion-beam mixed Fe/Si multilayered films

  • Park, J.S.;Kim, C.O.;Lee, Y.P.;Kudryavtsev, Y.V.;Dubowik, J.;Szymanski, B.;Rhee, J.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제5권2호
    • /
    • pp.38-42
    • /
    • 2001
  • We investigated physical properties of ion-beam mixed Fe/si multilayerd films(MLF) prepared by rf sputtering onto glass substrates at room temperature. Such an ion-beam treatment has led to noticeable changes in the structural and physical properties of the MLF: the formation of a new phase which is characterized by a crystalline silicide with a low coercivity and Tc = 550 K. In contrast to the as-prepared state, the ion-beam mixed MLF contains two magnetic phases. One of them is a very soft (Hc < 2 Oe), but microscopically homogeneous one with M$\sub$eff/=6.7 kG.

  • PDF

Polarization Maintaining Dichroic Beam-splitter and Its Surface Shape Control by Back Side AR Coating

  • Ma, Chong;Chen, Gang;Liu, Dingquan;Zhang, Rongjun;He, Junbo;Zhu, Xudan;Li, Daqi
    • Current Optics and Photonics
    • /
    • 제5권5호
    • /
    • pp.576-582
    • /
    • 2021
  • Dichroic beam-splitter (DBS) with polarization-maintaining took an important role in the free space quantum telecommunication tests on the Micius satellite of China. In this presentation, we designed and prepared a 50 layer polarization-maintaining DBS coating by a dual ion beam sputtering deposition (Dual-IBS) method. In order to solve a stress problem, an 18 layer special anti-reflection (AR) coating with similar physical thickness ratio was deposited on the backside. By stress compensation, the surface flatness RMS value of the DBS sample decreased from 0.341 λ (@632.8 nm) to 0.103 λ while beam splitting and polarization maintaining properties were almost kept unchanged. Further, we discussed the mechanism of film stress and stress compensation by equation deduction and found that total stress had a strong relationship with the total physical thickness and the ratio of layer materials.