• Title/Summary/Keyword: Ion-Assisted Reaction

Search Result 81, Processing Time 0.026 seconds

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces (마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발)

  • Kim, Hye Rim;Baek, Seung Hee;Jin, Hye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2013
  • Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

The Development of Cl-Plasma Etching Procedure for Si and SiO$_2$

  • Kim, Jong-Woo;Jung, Mi-Young;Park, Sung-Soo;Boo, Jin-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.516-521
    • /
    • 2001
  • Dry etching of Si wafer and $SiO_2$ layers was performed using He/Cl$_2$ mixture plasma by diode-type reactive ion etcher (RIE) system. For Si etching, the Cl molecules react with the Si molecules on the surface and become chemically stable, indicating that the reactants need energetic ion bombardment. During the ion assisted desorption, energetic ions would damage the photoresist (PR) and produce the bad etch Si-profile. Moreover, we have examined the characteristics of the Cl-Si reaction system, and developed the new fabrication procedures with a $Cl_2$/He mixture for Si and $SiO_2$-etching. The developed novel fabrication procedure allows the RIE to be unexpensive and useful a Si deep etching system. Since the etch rate was proved to increase linearly with fHe and the selectivity of Si to $SiO_2$ etch rate was observed to be inversely proportional to fHe.

  • PDF

The Dry Etching Properties of ZnO Thin Film in Cl2/BCl3/Ar Plasma

  • Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.116-119
    • /
    • 2010
  • The etching characteristics of zinc oxide (ZnO) were investigated, including the etch rate and the selectivity of ZnO in a $Cl_2/BCl_3$/Ar plasma. It was found that the ZnO etch rate, the RF power, and the gas pressure showed non-monotonic behaviors with an increasing Cl2 fraction in the $Cl_2/BCl_3$/Ar plasma, a gas mixture of $Cl_2$(3 sccm)/$BCl_3$(16 sccm)/Ar (4 sccm) resulted in a maximum ZnO etch rate of 53 nm/min and a maximum etch selectivity of 0.89 for ZnO/$SiO_2$. We used atomic force microscopy to determine the roughness of the surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas. Due to the relatively low volatility of the by-products formed during etching with $Cl_2/BCl_3$/Ar plasma, ion bombardment and physical sputtering were required to obtain the high ZnO etch rate. The chemical states of the etched surfaces were investigated using X-ray photoelectron spectroscopy (XPS). This data suggested that the ZnO etch mechanism was due to ion enhanced chemical etching.

Influence of Sample Preparation Method and Silver Salt Types on MALDI-TOFMS Analysis of Polybutadiene

  • Choi, Sung-Seen;Ha, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.108-112
    • /
    • 2008
  • Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of nonpolar polymeric materials is affected by the sample preparation as well as the matrix and cationizing agent. This study examined the influence of silver salt types on the MALDI analysis of polybutadiene (PB). Silver trifluoroacetate (AgTFA), silver benzoate (AgBz), silver nitrate ($AgNO_3$), and silver p-toluenesulfonate (AgTS) were used as the silver salts to compare the MALDI mass spectra of PB. The mixture solution of PB and 2,5-dihydroxybenzoic acid (DHB), as a matrix dissolved in THF, was spotted on the sample plate and dried. A droplet of the aqueous silver salt solution was placed onto the mixture. The mass spectrum with AgBz showed the clear $[M+Ag]^+$ ion distribution of PB while the mass spectrum with AgTFA did not show $[M+Ag]^+$ ions but only silver cluster ions. The mass spectra with $AgNO_3$ and AgTS did not show a clear $[M+Ag]^+$ ion distribution. The difference in the formation of $[M+Ag]^+$ ions of PB depending on the silver salts was attributed to the silver cation transfer reaction between the silver salt and the matrix (DHB). The mass spectrum showed a clear $[M+Ag]^+$ ion distribution of PB when the conjugate acid of the silver salt was less acidic than the matrix.

Kinetic Studies on the Reaction of Thiocyanate with Di-$\mu$-oxobis-(aquaoxalatooxomolybdate (V)) in Acid Media (산성수용매에서 이-$\mu$-옥소비스-(아쿠아옥살라토옥소몰리브덴 (V)) 산이온과 티오시안산이온의 반응)

  • Chang-Su Kim;Chang-Yong Kwon;Moon-Pyoung Yi;Chann-Woo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.623-628
    • /
    • 1985
  • Rate constants for complexing with thiocyanate after ring opening of molybdenum-oxalate in acid media were obtained spectrophotometrically at 460nm. The acid-assisted dissociation of molybdenum-oxalate and the reaction of thiocyanate with oxalatooxomolybdenum (V) complex in acid media were investigated with thiocyanate and hydrogen ion concentration. The kinetic data indicate that molybdenum-oxalate is protonated to a limited extent in acid media and the protonated complex is responsible for an increase in rate for the reaction of thiocyanate with oxalatooxomolybdenum (V) complex. Replacement of an oxalate ligand in acid media has been interpreted in terms of dissociative mechanism involving bond-breaking of the oxygen trans to the yl oxygen.

  • PDF

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

The Effect of Strong Acid and Ionic Material Addition in the Microwave-assisted Solubilization of Waste Activated Sludge (Microwave를 이용한 폐활성슬러지의 가용화 반응에서 강산과 이온성 물질의 첨가가 미치는 영향)

  • Lee, Jeongmin;Lee, Jaeho;Lim, Jisung;Kim, Youngwoo;Byun, Imgyu;Park, Taejoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.60-68
    • /
    • 2015
  • The study of waste activated sludge (WAS) solubilization has been increased for sludge volume reduction and enhancing the efficiency of anaerobic digestion. Microwave (MW)-assisted solubilization is an effective method for the solubilization of WAS because this method can lead to thermal, nonthermal effect and ionic conduction by dielectric heating. In this study, the solubilization of WAS by MW heating and conductive heating (CH) was compared and to enhance the MW-assisted solubilization of WAS at low MW output power, chemical agents were applied such as $H_2SO_4$ as the strong acid and $CaCl_2$, NaCl as the ionic materials. Compared to the COD solubilization of WAS by CH, that by MW heating was approximately 1.4, 6.2 times higher at $50^{\circ}C$, $100^{\circ}C$, respectively and the highest COD solubilization of WAS was 10.0% in this study of low MW output power condition. At the same MW output power and reaction time in chemically agents assisted experiments, the COD solubilization of WAS were increased up to 18.1% and 12.7% with the addition of $H_2SO_4$ and NaCl, however, that with the addition of $CaCl_2$ was 10.7%. This result might be due to the fact that the precipitation reaction occurred by calcium ion ($Ca^{2+}$) and phosphate ion (${PO_4}^{3-}$) produced in WAS after MW-assisted solubilization. In this study, $H_2SO_4$ turned out to be the optimal agent for the enhancement of MW efficiency, the addition of 0.2 M $H_2SO_4$ was the most effective condition for MW-assisted WAS solubilization.

Etch Mechanism of $Y_2O_3$ Thin Films in High Density Plasma (고밀도 플라즈마에 의한 $Y_2O_3$ 박막의 식각 메커니즘 연구)

  • 김영찬;김창일;장의구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.25.1-28
    • /
    • 2000
  • In this study, $Y_2O_3$ thin films were etched with inductively coupled plasma (ICP). The etch rate of $Y_2O_3$ , and the selectivity of $Y_2O_3$ to YMnO$_3$were investigated by varying $Cl_2$/($Cl_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2O_3$ , and the selectivity of $Y_2O_3$ to YMnO$_3$ were 302/min, and 2.4 at $Cl_2$/($Cl_2$+Ar) gas mixing ratio of 0.2 repetitively. In x-ray photoelectron spectroscopy (XPS) analysis, $Y_2O_3$ thin film was dominantly etched by Ar ion bombardment, and was assisted by chemical reaction of Cl radical. These results were confirmed by secondary ion mass spectroscopy(SIMS) analysis. YCl, and $YC_3$ existed at 126.03 a.m.u, and 192.3 a.m.u, respectively.

  • PDF

Synthesis of Terephthalate Intercalated Zn-Al Layered Double Hydroxides Using AZO Thin Film (AZO박막을 이용한 Terephthalate가 삽입된 Zn-Al 층상 이중 수산화물의 합성)

  • Park, Ki-Tae;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.161-165
    • /
    • 2017
  • In this paper, synthesis of terephthalate intercalated Zn-Al: Layered double hydroxides (LDHs) was studied. We designed freestanding Zn-Al: carbonate LDH nanosheets for a facile exchange technique. The as-prepared Zn-Al carbonate LDHs were converted to terephthalate intercalated Zn-Al:LDHs by ion exchange method. Initially, Al-doped ZnO (AZO) thin films were deposited on p-Si (001) by facing target sputtering. For synthesis of free standing carbonate Zn-Al:LDH, we dipped the AZO thin film in naturally carbonated water for 3 hours. Further, Zn-Al: carbonate LDH nanosheets were immersed in terepthalic acid (TA) solution. The ion exchange phenomena in the terephthalate assisted Zn-Al:LDH were confirmed using FT-IR analysis. The crystal structure of terephthalate intercalated Zn-Al:LDH was investigated by XRD pattern analysis with different mole concentrations of TA solution and reaction times. The optimal conditions for intercalation of terephthalate from carbonated Zn-Al LDH were established using 0.3 M aqueous solution of TA for 24 hours.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.