• Title/Summary/Keyword: Ion recognition

Search Result 61, Processing Time 0.025 seconds

Voltammetric Recognition of Ca2+ by Calix[4]arene Diquinone Diacid

  • Kim, Tae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3115-3117
    • /
    • 2010
  • The voltammetric study on a water-soluble calix[4]arene-diquinone-diacid (CDA) in pH 7.4 in the presence of $Ca^{2+}$ ion provided important information about the unique electrochemical behavior of CDA-$Ca^{2+}$ complex. Using CDA, $Ca^{2+}$ ion in aqueous solution was recognized quantitatively by voltammetric techniques.

Electrochemical Studies on Ion Recognition of Alkali Metal Cations by 18-crown-6 in Methanol

  • Chi-Woo Lee;Chang-Hyeong Lee;Doo-Soon Shin;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.487-490
    • /
    • 1991
  • Electrochemical studies of alkali metal cations $(Na^+, K^+, Rb^+, Cs^+)$ were performed in methanolic solutions of 18-crown-6 and tetrabutylammonium salts at dropping mercury electrodes (DME) and thin mercury film electrodes (TMFE). All the cations investigated were reduced reversibly at DME in the absence and presence of 18-crown-6, and in the latter the limiting currents were decreased and the reduction potentials shifted to the negative direction. The reduction potentials of the metal ions (0.2 mM) in the presence of the crown (10 mM) were - 2.14 $(Na^+)$, - 2.26 $(K^+)$, - 2.20 $(Rb^+) and - 2.14 $(Cs^+)$ V vs. SCE, respectively. The measured potentials were rationalized with ion recognition of the cations by the crown. Electroreduction at TMFE were highly irreversible. A new representation method of ion recognition is presented. In aqueous solutions, electroreduction of the alkali metal ions were characterized by adsorption.

Selective Fe2+ Ion Recognition Using a Fluorescent Pyridinyl-benzoimidazole-derived Ionophore

  • Lee, Jeong Ah;Eom, Geun Hee;Park, Hyun Min;Lee, Ju Hoon;Song, Hyesun;Hong, Chang Seop;Yoon, Sungho;Kim, Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3625-3628
    • /
    • 2012
  • Fluorescent organic molecules that respond to changes in the $Fe^{2+}$ concentration with selectivity to other abundant di-valent metal ions will offer the ability to understand the dynamic fluctuations of the $Fe^{2+}$ ion in interesting media. The use of 6-Br-ppmbi, derived from 2-pyridin-2-yl-benzimidazole, for metal ion-selective fluorescence recognition was investigated. Screening of the main group and transition metal ions showed exclusive selectivity for $Fe^{2+}$ ions even in the presence of competing metal ions. In addition, the requirement for low concentrations of probe molecules to detect certain amounts of $Fe^{2+}$ ions make this sensor unique compared to previously reported $Fe^{2+}$ ion sensors.

A Quinoline carboxamide based Fluorescent Probe's Efficient Recognition of Aluminium Ion and its Application for Real Time Monitoring

  • Manivannan, Ramalingam;Ryu, Jiwon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • A novel binding site for metal ion made by designing molecule with tetrazolo quinoline with hydrazine carboxamide (TQC) and the designed molecule successfully synthesized. The probe works by selectively detecting Al3+ ion via both fluorimetric and colorimetric approach. The probe's effectiveness towards aluminium ion detection is highly sensitive and selective with no substantial interference with other competing ions. The added Al3+ ion to TQC fetched a rapid change of visual color to yellow from colorless, also the response of fluorescence turn-on. The fluorescence turn-on and color change visibly by the probe TQC with Al3+ ion credited to the ICT phenomenon (intramolecular charge-transfer transition). The likely interaction of the probe with aluminium ion has also been there predicted from ESI-MS spectral analysis results. The usefulness of the probe confirmed by practical utility by making a test kit to monitor Al3+ ion in water which showed a naked eye detection by notable color change.

Synthesis and Anion Recognition of Cholic Acid-based Tripodal Receptor: A Chloride Selective Anion Receptor

  • Kim, Ki-Soo;Cho, Nam-Ju;Kim, Hong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.739-743
    • /
    • 2006
  • Synthesis of cholic acid-based tripodal receptor (1) and its high chloride ion affinity in comparison with that of chenodeoxycholic acid (2) and lithocholic acid-based receptor (3) was achieved. Anion binding affinities of the receptors were evaluated $by\;^1H$ NMR and ITC titrations. Tripodal receptor 1 showed a selective affinity for $CI ^-$ over $Br ^-$, $I^-$, $H_2 PO _4\;^-$, and $CH _3 CO_2\;^-$. The selectivity of 1 for $CI ^-$ is about 3 times that of $Br ^-$, and 17 times that for $H_2 PO_4\;^-$.

Sr2+ Ion Selective p-tert-Butylthiacalix[4]arene Bearing Two Distal Amide Units

  • Kim, Tae-Hyun;Kim, Ha-Suck;Lee, Joung-Hae;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.620-622
    • /
    • 2008
  • A new thiacalix[4]arene diamide (TCAm) has been prepared and its electrochemical property and complexation behavior toward various metal ions have been investigated by voltammetry. p-tert-Butylthiacalix[4]arene diamide (TCAm) exhibited selectivity toward Sr2+ ion over alkali, alkaline earth and transition metal ions while conventional calix[4]arene diamides showed selective binding property with Ca2+ ion. This is probably due to the bigger size of thiacalix[4]arene than those of calix[4]arene.

Fabrication of a Neural Network IC for Korean Vowels Recognition (한국어 모음인식 신경회로망 집적회로의 제작)

  • 최상훈;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.71-75
    • /
    • 1993
  • This paper presents a neural network IC for Korean vowels recognition. The neural network is composed with three levels and which is learned by Back Propagation algorithm. In the neural network IC, the neuron bodys and synapses are implemented with CMOS inverters and ion-implanted polysilicon resistors.

  • PDF

Colorimetric and Fluorescent Recognition of Fluoride by a Binaphthol Thioureido Derivative

  • Tang, Lijun;Wang, Nannan;Guo, Jiaojiao
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2145-2148
    • /
    • 2012
  • A new thiourea based receptor (1) was synthesized and applied to fluoride ion recognition in acetonitrile solution. Receptor 1 displayed dual changes in absorption and fluorescence emission intensities selectively for fluoride ions. The interaction of 1 with fluoride undergoes a deprotonation process that is confirmed by $^1H$ NMR titration.

Turn-On Type Fluorogenic and Chromogenic Probe for the Detection of Trace Amount of Nitrite Ion in Water

  • Saleem, Muhammad;Abdullah, Razack;Hong, In Seok;Lee, Ki-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.389-393
    • /
    • 2013
  • A rhodamine B-based fluorescent probe for nitrite ion ($NO{_2}^-$) has been designed, synthesized, characterized and its properties for recognition of $NO{_2}^-$ were studied. Nearly non fluorescent probe upon reaction with nitrite ion significantly triggered the fluorescence. Fluorescence response is based on ring opening of the spirolactam of rhodamine B phenyl hydrazide showing maximum absorbance at 552 nm and maximum emission at 584 nm. Probe 3 exhibited high sensitivity and extreme selectivity for nitrite ion over other common ions and oxidants ($Cl^-$, $ClO^-$, $ClO{_2}^-$, $ClO{_3}^-$, $ClO{_4}^-$, $SO{_4}^{2-}$, $SiO{_3}^{2-}$, $NO{_3}^{2-}$, $CO{_3}^{2-}$) examined in methanol water (1:1, v/v) at pH 7.0. The probe might be a new efficient tool for detection of nitrite ion in natural water and biological system.

Teaching a Known Molecule New Tricks: Optical Cyanide Recognition by 2-[(9-Ethyl-9H-carbazol-3-yl)methylene]propanedinitrile in Aqueous Solution

  • Tang, Lijun;Zhao, Guoyou;Wang, Nannan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3696-3700
    • /
    • 2012
  • The colorimetric and fluorescent cyanide recognition properties of 2-[(9-ethyl-9H-carbazol-3-yl)methylene]-propanedinitrile (1) in $CH_3CN-H_2O$ (2/1, v/v, HEPES 10 mM, pH = 7.0) solution were evaluated. The optical recognition process of probe 1 exhibited high sensitivity and selectivity to cyanide ion with the detection limit of $2.04{\times}10^{-6}$ M and barely interfered by other coexisting anions. The sensing mechanism of probe 1 is speculated to undergo a nucleophilic addition of cyanide to dicyanovinyl group present in compound 1. The colorimetric and fluorescent dual-modal response to cyanide makes probe 1 has a potential utility in cyanide detection.