• Title/Summary/Keyword: Ion mixing

Search Result 394, Processing Time 0.035 seconds

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery (SiOx 함량에 따른 CB/SiOx/C 음극재의 전기화학적 특성)

  • Kim, Kyung Soo;Kang, Seok Chang;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.117-123
    • /
    • 2021
  • In this study, the composite was prepared by mixing SiOx, soft carbon, and carbon black and the electrochemical properties of lithium ion battery were investigated. The content of SiOx added to improve the capacity of the soft carbon anode material was varied to 0, 6, 8, 10, 20 wt%, and carbon black was added as a structural stabilizer for reducing the volume expansion of SiOx. The physical properties of prepared CB/SiOx/C composite were investigated through XRD, SEM, EDS and powder resistance analysis. In addition, the electrochemical properties of prepared composite were observed through the charge/discharge capacity, rate and impedance analysis of the lithium ion battery. The prepared CB/SiOx/C composite had an inner cavity capable of mitigating the volume expansion of SiOx by adding carbon black. The formed internal cavity showed a low initial efficiency when the SiOx content was less than 8 wt%, and low cycle stability when the content of SiOx was less than 20 wt%. The CB/SiOx/C composite containing 10 wt% of SiOx showed an initial discharge capacity of 537 mAh/g, a capacity retention rate of 88%, and a rate of 79 at 2C/0.1C. SiOx was added to improve the capacity of the soft carbon anode material, and carbon black was added as a structural stabilizer to buffer the volume change of SiOx. In order to use the CB/SiOx/C composite as a high-efficiency anode material, the mechanism of the optimal SiOx and the use of carbon black as a structural stabilizer was discussed.

Numerical Study on the Characteristics of High PM2.5 Episodes in Anmyeondo Area in 2009 (2009년 안면도 지역 고농도 PM2.5 특성에 관한 수치 연구)

  • Jeon, Won-Bae;Lee, Hwa Woon;Lee, Soon-Hwan;Park, Jae-Hyeong;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2014
  • This paper investigates the characteristics of high $PM_{2.5}$ episodes occurred at Anmyeondo area in spring time, 2009. The monthly mean $PM_{2.5}$ concentration during April was the highest in the year and especially, high levels of $PM_{2.5}$ exceeding standard regulation level were sustained consecutively during 5 to 13 April. To analyze more detailed $PM_{2.5}$ characteristics, numerical simulations were carried out using CMAQ(Community Multi-scale Air Quality) with IPR(Integrated Process Rate) and DDM-3D(Decoupled Direct Method). $PM_{2.5}$ level was lower in daytime than that in nighttime due to vigorous vertical mixing during daytime. The chemical composition was showed that ratio of primary ion components such as sulfate($SO_4{^{2-}}$), nitrate($NO_3{^-}$) and ammonium($NH_4{^+}$) were nearly half of total amount of $PM_{2.5}$. Aerosol and transport process dominantly contributed to $PM_{2.5}$ concentration in Anmyeondo area and contribution rate of local emissions was nearly zero since Anmyeondo area has rare anthropogenic PM emission sources. DDM-3D analysis result showed that $PM_{2.5}$ in Anmyeondo area was influenced by emissions from Shanghai and Shandong region of China.

Dry Etching of $Al_2O_3$ Thin Film in Inductively Coupled Plasma

  • Xue, Yang;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.67-67
    • /
    • 2009
  • Due to the scaling down of the dielectrics thickness, the leakage currents arising from electron tunneling through the dielectrics has become the major technical barrier. Thus, much works has focused on the development of high k dielectrics in both cases of memories and CMOS fields. Among the high-k materials, $Al_2O_3$ considered as good candidate has been attracting much attentions, which own some good properties as high dielectric constant k value (~9), a high bandgap (~2eV) and elevated crystallization temperature, etc. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of BClxOy compound. In this study, the etch characteristic of ALD deposited $Al_2O_3$ thin film was investigated in $BCl_3/N_2$ plasma. The experiment were performed by comparing etch rates and selectivity of $Al_2O_3$ over $SiO_2$ as functions of the input plasma parameters such as gas mixing ratio, DC-bias voltage and RF power and process pressure. The maximum etch rate was obtained under 15 mTorr process perssure, 700 W RF power, $BCl_3$(6 sccm)/$N_2$(14 sccm) plasma, and the highest etch selectivity was 1.9. We used the x-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. The Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Influencing Factors on the Crystallizations of ZSM-5 in the Absence of Organic Template (유기 템플레이트 배제하의 ZSM-5 결정화에 따른 영향인자)

  • Kim, Wha-Jung;Lim, Chang-Whan;Lee, Seung-Ae;Lee, Myung-Chul;Jeong, Chan-Yee
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.776-784
    • /
    • 1993
  • A pentasil zeolite, ZSM-5 was synthesized in the absence of organic template, $TPA^+$ ion at $210^{\circ}C$. It was realized that a conventional method can not be applied to the synthesis system where organic templates are not used. The results indicated that the compositional range for the crystallization of ZSM-5 is very narrow, requiring very careful controls in the $Na_2O/SiO_2$and $SiO_2/Al_2O_3$ratios. In addition, the results showed that the effects of mixing method, aging and reaction time on the crystallization of ZSM-5 were extraordinarily significant.

  • PDF

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF

Studies on Preparation of Transparent Iron Oxide (투명산화철의 製造에 관한 硏究)

  • Baek, Moo-Hyun;Lim, Jong-Ho;Kim, Tae-Kyung;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The optimum conditions were studied for the preparation of transparent iron oxide with the air oxidation of FeOOH. The FeOOH obtained by mixing NaOH and FeSO$_4$ solution in various conditions such as R(=2NaOH/FeSO$_4$), FeSO$_4$ concentration. reaction temperature and air flow rate. When the FeSO$_4$ increased gradually, the concentration of iron ion in the solution became high. So, particle size increased precipitating Fe$_3O_4$. Goethite dehydrate at about 200$^{\circ}C$ and ended the reaction at about 320$^{\circ}C$ forming hematite. The lower the reaction temperature was, the shorter the particle length of goethite and particle size decreased. When the flow rate of air as an oxidant increased, the amount of dissolved oxygen in the solution increased, which made oxidation rate increased. And then particle size of goethite decreased.

Dechlorination of the Fungicide Chlorothalonil by Zerovalent Iron and Manganese Oxides (Zerovalent Iron 및 Manganese Oxide에 의한 살균제 Chlorothalonil의 탈염소화)

  • Yun, Jong-Kuk;Kim, Tae-Hwa;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study is conducted to determine the potential of zerovalent iron (ZVI), pyrolusite and birnessite to remediate water contaminated with chlorothalonil. The degradation rate of chlorothalonil by treatment of ZVI, pyrolusite and birnessite was much higher in low condition of pH. Mixing an aqueous solution of chlorothalonil with 1.0% (w/v) ZVI, pyrolusite and birnessite resulted in 4.7, 13.46 and 21.38 hours degradation half-life of chlorothalonil, respectively. Dechlorination number of chlorothalonil by treaonent of ZVI, pyrolusite and birnessite exhibited 2.85, 1.12 and 1.09, respectively. Degradation products of chlorothalonil by teartment of pyrolusite and birnessite were confirmed as trichloro-1,3-dicyanobenzene and dichloro-1,3-dicyanobenzene which were dechlorinated one and two chlorine atoms from parent chlorothalonil by GC-mass. Degradation products of chlorothalonil by ZVI were identified not only as those by pyrolusite and birnessite but as further reduced chloro-1,3-dicyanobenzene and chlorocyanobenzene.

Synthesis of Pellet-Type Red Mud Adsorbents for Removal of Heavy Metal Ions (중금속이온제거를 위한 입자형 적니흡착제의 제조)

  • 김정식;한상원;황인국;배재흠;최우진
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Red mud is generated as a by-product in the production of $Al(OH)_{3}/Al_2O_3$ from bauxite ore. In this study the pellet-type adsorbents have been made from the red mud, and their adsorption capacities of heavy metal ions have been tested. The pellet-type adsorbents were synthesized to utilize the excellent adsorption capacity of the powder-type adsorbent for industrial application. The pellet-type adsorbents were prepared by mixing several kinds of additives with the red mud. It is found that the pellet-type adsorbent, made by sintering a mixture of red mud (96.0 wt%), polypropylene (2.5%), fly ash (0.5 w%), and sodium metasilicate(1.0 wt%) at $1200^{\circ}C$ for 30 minutes, has the highest adsorption capacity. in this work, the two kinds of pellet-type adsorbents (bead-type, crushed-type) were prepared. The crushed-type adsorbent was found to show a better adsorption/desorption performance than the bead-type adsorbent. The crushed-type adsorbent showed a good adsorption capacity of $Pb^{2+}$ like the powder-type adsorbent.

  • PDF