• Title/Summary/Keyword: Ion exchange method

Search Result 432, Processing Time 0.031 seconds

Properties of Ion-Exchanged Substrate Glass Using Slurry Method (Slurry법을 이용한 이온교환된 기판유리의 특성)

  • Kim, Seong-Il;Choi, Deuk-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.182-182
    • /
    • 2010
  • The behavior of properties of ion exchanged substrate glasses was investigated in this study. In order to study the effects of ion exchange, ion exchange behavior with ion penetration depth, amount of ion exchange, density and thermal expansion was measured according to the time and temperature. The mechanical properties were evaluated by the three point bending test and curvature change, and then fracture patterns were investigated by optical microscope.

  • PDF

Analysis and Measurement of Effective Refractive Indices with Ion-exchanged Slab Waveguide (이온교환 평판도파로의 실효굴절율 측정 및 해석)

  • 천석표;박정일;박태성;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.73-76
    • /
    • 1995
  • In this study, the slab waveguide was fabricated using potassium-nitride(KNO$_3$) or silver-nitride (AgNO$_3$) molten sources by ion-exchange process. The effective refractive indices of waveguide were measured by Prism-Coupling method. and The characteristics of waveguide(mode dispersion, effective diffusion depth. surface refractive index, diffusion coefficient, and refractive index profile etc,) were investigated by WKB method, In the case of potassium ion-exchange, the computer calculation showed that the refractive index profile of waveguide followed Gaussian function, the surface refractive index increased with ion-exchange time and the effective diffusion depth increased a little as ion-exchange time increased, while the surface refractive index of silver ion-exchanged waveguide decreased with ion-exchange time because of the ion depletion on the surface of waveguide, and the effective diffusion depth seriously with ion-exchange tim. Double ion-exchanged waveguide was fabricated by performing silver ion-exchange after potassium ion-exchange. Double ion-exchanged waveguide had a tight mode binding force since the surface refractive index was larger than single step ion-exchanged waveguide.

  • PDF

Comparison of the Ion-exchange Method and Evaporation Method for the Detection of Radioactivity in Water (수중 방사능 측정시 이온교환농축법과 증발건조법의 비교)

  • Ji, Pyung-Gook;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.52-56
    • /
    • 1988
  • An ion-exchange method for the detection of radioactivity in water using ion-exchange resin in concentrating radioactive nuclides was compared with an evaporation method. The loss of the radioactive materials in the sample treated by the ion-exchange method was less by about 20% than that by the evaporation method. In addition, the evaporation method needed about 20 hours for evaporating one liter of the sample at $70^{\circ}C$, while the ion-exchange method spent 6 hours to adsorb and adsorb the same amount of the sample on the resin. Consequently, the ion-exchange method is more effective than the evaporation method for the treatment of the radioactively contaminated water and is especially suitable for detecting the low-level radioactivity in water.

  • PDF

The guided field distribution characteristics in the ion-exchange channel glass waveguide (이온 교환 채널 유리 도파로의 도파광 분포특성)

  • 박정일;박태성;천석표;정홍배
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.332-339
    • /
    • 1995
  • In this paper, it was investigated the guided field intensity distribution of the channel in the silver & potassium ion-exchange glass-waveguide. The guided field intensity distribution analysis of ion-exchange glass-waveguide was based on the combination of the WKB dispersion relationship method with a Gaussian distribution function of refractive index profile and the Field Shadow method to the modeling of the channel waveguide. As the results of the channel waveguide modeling, it was represented 2-dimensional and 3-dimensional field distribution of ion-exchange glass waveguide.

  • PDF

Ion-Exchange Separation of Thorium in Monazite (이온交換樹指에 依한 토리움分離)

  • Choi, Han-Suk;Ha, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.56-59
    • /
    • 1961
  • Ion exchange procedure was studied for the separation of thorium from the acidic solution obtained by means of decomposition of monazite with alkali solution. Present cation exchange method consists of adsorption of cations from the sample solution (ca. 0.6N HCl acidic) onto Amberlite IR-120 resin, elution of all of the rare earth cations with 700 ml. of 2N Hydrochloric acid, and recovery of the thorium by elution with 200ml. of 6N sulfaric acid. Thorium recovery by the ion-exchange method mentioned above, was quantitative, and it is concluded that this ion-exchange method may be used not only for industrial separation of thorium from rare earths but also for quantitative determination of thorium with relative error, ${\pm}1.0.$.

  • PDF

Synthesis of High Loading PONF-g-GMA Anion Exchange Fiber Containing Ion Exchange Resin and Their Adsorption Properties of Vanadium (이온교환 수지를 함유한 PONF-g-GMA High Loading 음이온교환 섬유의 합성 및 바나듐 흡착 특성)

  • Baek, Ki-Wan;Park, Seung-Wook;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.315-321
    • /
    • 2007
  • Aminated PONF-9-GMA ion exchange fabrics were synthesized by radiation induced graft copolymerization. Hybrid ion exchange fabrics combined with aminated PONF-g-GMA fabrics and anionic ion exchange resin were also fabricated by hot melt adhesion method and then their adsorption properties were investigated. Ion exchange capacity of the hybrid ion exchange fabrics was higher than ion exchange fabric and was lower than bead resin. The maximum value was 4.18 meq/g. Adsorption breakthrough time for vanadium of the hybrid ion exchange fabric was 550 min, which was faster than bead resin but slower than fibrous ion exchanger. The Breakthrough time of the hybrid ion exchange fabrics gets longer with increasing pH. The initial breakthrough time occurred around 400 min with increasing vanadium concentration.

Screening and Purification of Superoxide Dismutase Producing Marine Bacterium Using Photochemically Generated Superoxide Ion (광화학적으로 제조된 Superoxide Radical을 이용한 Superoxide Dismutase를 생산하는 해양미생물의 탐색 및 효소정제)

  • 조기웅
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.81-85
    • /
    • 2002
  • A marine bacterium producing superoxide dismutase, strain number B446, was screened with nitrite quantitation method using hydroxy amine and photochemically generated superoxide ion, and the superoxide dismutase was purified through 35-75% ammonium sulfate precipitation, DEAE-Sephadex A-25 ion exchange chromatography, Sephadex G-200 gel filtration chromatography, and High-Q anion exchange chromatography to a yield of 6% and purification fold of 32.3.

Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin (오염된 물로부터 이온교환수지를 이용한 방사성이온 제거)

  • Shin, Do Hyoung;Ju, Ko Woon;Cheong, Seong Ihl;Rhim, Ji Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.633-638
    • /
    • 2016
  • In this study, we used three kinds of commercially available cation, anion, and mixed-ion exchange resins to separate radioactive ions from a polluted water containing Cs, I, and other radioactive ions. The experiment was conducted at a room temperature with a batch method, and a comparative analysis on the decontamination ability of each resin for the removal of Cs and I was performed by using different quantities of resins. The concentration was analyzed using ion chromatography and the ion exchange resin product from company D showed an overall high ion exchange ability. However, for most of the experiments when the amount of ion exchange resin was decreased, the decontamination ability of the resins against mass increased. When the mass of company D's cation exchange resin was small, the ion exchange ability against Cs and I ions were measured as 0.199 and 0.344 meq/g, respectively. When the mixed ion exchange resin was used, the ion exchange ability against I ions was measured as 0.33 meq/g. All in all, company D's ion exchange resins exhibited a relatively higher ion exchange ability particularly against I ions than that of other companies' exchange ions.

Ligand Exchange Studies with an Iminodiacetic Acid Ion Exchange Resin (Iminodiacetic Acid 이온 교환수지를 사용한 Ligand Exchange 에 대한 연구)

  • CHONG MIN BAK
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.56-59
    • /
    • 1967
  • Mixtures of amines can be separated by elution chromatography on a chelating resin, Dowex A-1 loaded with nickel ions based on ligand exchange. Aqueous ammonia is used as the eluent. The method has proved particulary effective for separating aromatic amines.

  • PDF

Synthesis and Characterization of Ion Exchange Particles for Application of Anion Exchange Membrane (음이온교환막 적용을 위한 이온교환입자의 합성 및 특성평가)

  • Dong Jun Lee;Kwang Seop Im;Ka Yeon Ryu;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.137-147
    • /
    • 2023
  • In this study, Br-PPO was developed by applying additive organic particles through a suspension polymerization synthesis method. The anion exchange membrane fuel cell system performance was evaluated using it to an anion exchange membrane. To improve the performance, organic ion exchange particles were prepared and added to the anion exchange membrane. Chemical structure analysis and synthesis were determined through FT-IR and NMR, and tensile strength and thermal stability were measured through TGA and UTM to determine whether it could be driven. Before the anion exchange membrane fuel cell test, the performance was evaluated by measuring the ion conductivity and ion exchange capacity. Finally, the Br-PPO-TMA-SDV (0.7%) anion exchange membrane with excellent ion conductivity and ion exchange capacity was introduced into the fuel cell system. Its performance was compared with FAA-3-50, a commercial membrane, to determine whether it could be introduced into a fuel cell system.