• Title/Summary/Keyword: Ion energy

Search Result 2,990, Processing Time 0.037 seconds

Lifetime Management Method of Lithium-ion battery for Energy Storage System

  • Won, Il-Kuen;Choo, Kyoung-Min;Lee, Soon-Ryung;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1173-1184
    • /
    • 2018
  • The lifetime of a lithium-ion battery is one of the most important issues of the energy storage system (ESS) because of its stable and reliable operation. In this paper, the lifetime management method of the lithium-ion battery for energy storage system is proposed. The lifetime of the lithium-ion battery varies, depending on the power usage, operation condition, and, especially the selected depth of discharge (DOD). The proposed method estimates the total lifetime of the lithium-ion battery by calculating the total transferable energy corresponding to the selected DOD and achievable cycle (ACC) data. It is also demonstrated that the battery model can obtain state of charge (SOC) corresponding to the ESS operation simultaneously. The simulation results are presented performing the proposed lifetime management method. Also, the total revenue and entire lifetime prediction of a lithium-ion battery of ESS are presented considering the DOD, operation and various condition for the nations of USA and Korea using the proposed method.

MICROSTRUCTURE AND TRIBOLOGY OF $TiB_2$ AND $TiB_2$-TiN DOUBLE-LAYER COATINGS

  • Yang, Yunjie;Chen, Lizhi;Zheng, Zhihong;Wang, Xi;Liu, Xianghuai
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.40-48
    • /
    • 1995
  • $TiB_2$-TiN double-layer coating have been prepared by ion beam enhanced deposition. AES, XRD, TEM and HRTEM were employed to characterize the $TiB_2$ layer. The microhardness of the coatings was evaluated by an ultra low-load microhardness indenter system, and the tribological behavior was examined by a ball-on-disc tribology wear tester. It was found that in a single titanium diboride layer, the composition is uniform along the depth of the film, and it is mainly composed of nanocrystalline $TiB_2$ with hexagonal structure, which resulted from the ion bombardment during the film growth. The hardness of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of 39 Gpa at ion energy of 85 keV. The tribological property of the TiB2 films is also improved by higher energy of 85keV. The tribological property of the $TiB_2$ films is also improved by higher energy ion beam bombardment. There is no major disparity in the mechanical properties of double-layer $TiB_2$/TiN coatings and TiN/$TiB_2$ coatings. Both show an improved wear resistance compared with single-layer $TiB_2$ films. The adhesion of double-layer coatings is also superior to that of single-layer films.

  • PDF

Research Review of Sodium and Sodium Ion Battery (나트륨을 활용한 이차전지 연구동향)

  • Ryu, Cheol-Hwi;Kang, Seong-Gu;Kim, Jin-Bae;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.

Kinetic Energy Release in the Fragmentation of tert-Butylbenzene Molecular Ions. A Mass-analyzed Ion Kinetic Energy Spectrometric (MIKES) Study

  • Choe, Joong-Chul;Kim, Byung-Joo;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.167-171
    • /
    • 1989
  • Kinetic energy release in the fragmentation of tert-butylbenzene molecular ion was investigated using mass-analyzed ion kinetic energy spectrometry. Method to estimate kinetic energy release distribution (KERD) from experimental peak shape has been explained. Experimental KERD was in good agreement with the calculated result using phase space theory. Effect of dynamical constraint was found to be important.

Optical Properties of Photoferroelectric Semiconductors V. (Photoferroelectric 반도체의 광학적 특성 연구 V.)

  • 김화택;윤상현;현승철;김미양;김용근;김형곤;최성휴;윤창선;정해문
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.1
    • /
    • pp.130-137
    • /
    • 1994
  • SbSBr, BiSBr, SbSBr : Co, BiSBr : Co, SbSBr : Ni 및 BiSBr : Ni 단결정을 수직 Bridgman 방법으로 성장시켰다. 성장된 단결정의 구조는 orthorhombic 구조이며 광학적 energy band gap 구조는 간접적이형이었고 energy gap의 온도의존성은 일차 및 이차 상전이점에서 anomalous 한 특성이 나 타 났다. 불순물로 첨가한 cobalt와 nickel은 Td 대칭점에 Co2+ ion, Co3+ ion 및 Ni2+ ion으로 위치하며 이들 ion의 energy 준위간의 전자전이에 의하여 불순물 광흡수 peak들이 나타난다.

  • PDF

Enhanced ICRF Heating of H-mode Plasmas in KSTAR

  • Kim, Sun-Ho;Wang, Son-Jong;Ahn, Chan-Yong;Kim, Sung-Kyew
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.317-317
    • /
    • 2011
  • Enhanced ICRF (Ion Cyclotron Range of Frequency) ion heating of H-mode D(H) plasma will be tried in 2011 KSTAR experimental campaign. Minority heating is a main ion heating scheme in the ICRF. Its efficiency increases as the hydrogen minority ratio increases in deuterium plasmas. And it should be sustained at a lower level than the critical minority ratio. Consequently, it is important to elevate the critical ratio to maximize ion heating and it is possible by increasing the ion temperature or parallel wave number (k${\parallel}$) of the antenna. Increasing the k${\parallel}$ is not a good approach since the coupling efficiency decreases exponentially with regard to k${\parallel}$ as well. So the remaining method is to increase ion temperature by using NB (Neutral Beam). Ion heating fraction of NB increases as the electron temperature increases. Therefore, we will try to heat electron by using ECH together with NB ion heating before ICRF power injection. The ICRF heating efficiency will be compared with respect to several NB+ECH+ICRF heating combinations through several diagnostics such as XICS (Xray Imaging Crystal Spectroscopy), CES (Charge Exchange Spectroscopy) and neutron measurement. The theoretical background and the experimental results will be presented in more detail in the conference.

  • PDF

OPTICAL PROPERTIES OF AMORPHOUS CN FILMS

  • Park, Sung-Jin;Lee, Soon-Il;Oh, Soo-Ghee;Bae, J.H.;Kim, W.M.;Cheong, B.;Kim, S.G.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.556-562
    • /
    • 1996
  • Carbon nitride (CN) films were synthesized on silicon substrates by a combined ion-beam and laser-ablation method under various conditions; ion-beam energy and ion-beam current were varied. Raman spectroscopy and spectroscopic ellipsometry (SE) were employed to characterize respectively the structural and the optical properties of the CN films. Raman spectra show that all the CN films are amorphous independent of the ion-beam current and the ion-beam energy. Refractive indices, extinction coefficients and optical band gaps which were determined from the measured SE spectra exhibit a significant dependence on the synthesis conditions. Especially, the decrease of the refractive indices and the shrinkage of the optical band gap is noticeable as the ion-beam current and/or the ion-beam energy increase.

  • PDF

Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin (이온교환수지를 이용한 알칼리 금속 이온 및 염소 이온의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2020
  • A research was conducted on the removal of ion from the solution involving the alkali metal ion and chlorine ion using ion exchange resin. The cation exchange resin and anion exchange resin was used for the remove of metal ion (Na+ and K+) and chlorine ion (Cl-), respectively. In the case of solution A (involving 36,633 ppm of Na+ and 57,921 ppm of Cl-), the Na+ ion and Cl- ion were removed over 99% within 20 min. In the case of solution B (involving 1,638 ppm of K+), the K+ ion was removed over 99% within 3 min.

Surface energy change and hydrophilic formation of PE, PS and PTFE films modification by hydrogen ion assisted reaction

  • Jung Cho;Ki Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.202-202
    • /
    • 1999
  • The Polyethylene (PE), Polystyrene (PS) and Polytetrafluoroethylene (PTFE) surface modification was investigated by hydrogen io assisted reaction (H-IAR) in oxygen environment. The IAR is a kind of surface modification techniques using ion beam irradiation in reactive gas environment. The energy of hydrogen ion beam was fixed at 1keV, io dose was varied from 5$\times$1014 to 1$\times$1017 ions/$\textrm{cm}^2$, and amount of oxygen blowing gas was fixed 4ml/min. Wettability was measured by water contact angles measurement, and the surface functionality was analyzed by x-ray photoelectron spectroscopy. The contact angle of water on PE modified by argon ion beam only decrease from 95$^{\circ}$ to 52$^{\circ}$, and surface energy was not changed significantly. But, the contact angle using hydrogen ion beam with flowing 4ml/min oxygen stiffly decreased to 8$^{\circ}$ and surface energy to 65 ergs/cm. In case of PS, the contact angle and surface energy changes were similar results of PE, but the contact angle of PTEE samples decreased with ion dose up to 1$\times$1015 ions/$\textrm{cm}^2$, increased at higher dose, and finally increased to the extent that no wetting was appeared at 1$\times$1017 ions/$\textrm{cm}^2$. These results must be due to the hydrogen ion beam that cleans the surface removing the impurities on polymer surfaces, then hydrogen ion beam was activated with C-H bonding to make some functional groups in order to react with the oxygen gases. Finally, unstable polymer surface can be changed from hydrophobic to hydrophilic formation such as C-O and C=O that were confirmed by the XPS analysis, conclusionally, the ion assisted reaction is very effective tools to attach reactive ion species to form functional groups on C-C bond chains of PE, PS and PTFE.

  • PDF

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.