Browse > Article
http://dx.doi.org/10.7316/KHNES.2015.26.1.054

Research Review of Sodium and Sodium Ion Battery  

Ryu, Cheol-Hwi (Grad. School, Dep. Green Energy Engineering, Hoseo Univ.)
Kang, Seong-Gu (Dep. Chemical Engineering, Hoseo Univ.)
Kim, Jin-Bae (Dep. Chemical Engineering, Hoseo Univ.)
Hwang, Gab-Jin (Grad. School, Dep. Green Energy Engineering, Hoseo Univ.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.26, no.1, 2015 , pp. 54-63 More about this Journal
Abstract
The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.
Keywords
secondary battery; Na ion battery; Na molten salt battery; sodium; energy storage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B.L. Ellis, L.F. Nazar, "Sodium and sodium-ion energy storage batteries", Current Opinion in Solid State and Materials Science, Vol. 16, 2012, p. 168.   DOI
2 H-S. Choi, J-C. Kim, C-H. Ryu, G-J. Hwang, "Research review of the all vanadium redox-flow battery for large scale power storage", Membrane Journal, Vol. 21, No. 2, 2011, p. 107.
3 G-J. Hwang, A-S. Kang, H. Ohya, "Review of the redox-flow secondary battery", Chemical Industry and Technology, Vol. 16, No. 5, 1998, p.455.
4 NGK homepage, http://www.ngk.co.jp
5 T. Horie, Y. Ishida, H. Fujioka, "New trends in power storage systems", NTT Building Technology Institute Report, 2004.
6 R.C. Galloway, C.-H. Dustmann, "ZEBRA batterymetal cost availability and recycling", EVS-20, Nov.15-19, California, USA, 2003.
7 M. Mack, R. Pitchai, "Batteries 2010", The Big Batteries Industry Guide-Battery overview, Batteries International, January 2010.
8 J.L. Sudworth, "The sodium/nickel chloride (ZEBRA) battery", J. Power Sources, Vol. 100, 2001, p. 149.   DOI
9 K. Nitta, S. Inazawa, S. Sakai, A. Fukunaga, E. Itani, K. Numata, R. Hagiwara, T. Nohira, "Development of molten salt electrolyte battery", SEI Technical Review, No. 76, April 2013, p.33.
10 A. Fukunaga, T. Nohira, Y. Kozawa, R. Hagiwara, S. Sakai, K. Nitta, S. Inazawa, "Intermediate-temperature ionic liquid NaFSAKFSA and its application to sodium secondary batteries", J. Power Sources, Vol. 209, 2012, p.52.   DOI
11 C.-Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, "Electrochemical and structural investigation of $NaCrO_2$ as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA-KFSA", J. Power Sources, Vol. 237, 2013, p. 52.   DOI
12 A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, "A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-$C_1C_3pyrFSA$ ionic liquid at 363K", J. Power Sources, Vol. 246, 2014, p. 387.   DOI
13 NEDO report No. 1079, "Making sodium-ion batteries that are worth their salt", 2011. 11. 16.
14 C.-Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Y. Orikasa, Y. Uchimoto, "Pyrophosphate $Na_2FeP_2O_7$ as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid", J. Power Sources, Vol. 246, 2014, p. 783.   DOI
15 S. Kuze, J. Kageura, S. Mastumoto, T. Nakayama, M. Makidera, M. Saka, T. Yamaguchi, T. Yamamoto, K. Nakane, "Development of a sodium ion secondary battery", Sumitomo Kagaku, Vol. 2013, 2013, p. 1.
16 N. Yabuuchi, S. Komaba, "A study on Iron-based layered Na-insertion materials", PF NEWS, Vol. 30, No. 3, Nov., 2012, p. 11.
17 F. Sauvage, L. Laffont, J.-M. Tarascon, E. Baudrin, "Study of the insertion/deinsertion mechanism of sodium into $Na_{0.44}MnO_2$", Inorg. Chem., Vol. 46, 2007, p. 3289.   DOI
18 Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L.-V. Saraf, Z. Yang, J. Liu, "Reversible sodium ion insertion in single crystalline manganese oxide nanowire with long cycle life", Adv. Mater., Vol. 23, 2011, p. 3155.   DOI   ScienceOn
19 T. Omori, "Natoriumu ion denchino denkyoku tokuseito zenkotaidenchino sisaku", Central Research Institute of Electric Power Industry (Japan) report, No. Q12011, May, 2013.
20 Z. Liu, X. Wang, Y. Wang, A. Tang, S. Yang, L. He, "Preparation of $NaV_{1−x}Al_xPO_4F$ cathode materials for application of sodium-ion battery", Trans. Nonferrous Met. Soc. China, Vol. 18, 2008, p. 346.   DOI
21 J. Barker, RKB. Gover, P. Burns, AJ. Bryan, "Hybrid-ion a lithium-ion cell based on a sodium insertion materials", Electrochem. Solid-State Lett., Vol. 9, 2006, A190.   DOI
22 A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li ion systems: An unexpected electrochemical mechanism", J. Amer. Chem. Soc., Vol. 134, 2012, 20805.   DOI
23 N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, "$P_2$-type $Na_x[Fe_{1/2}Mn_{1/2}]O_2$ made from earth abundant elements for rechargeable Na batteries", Nature Materials, Vol. 11, 2012, p. 512.   DOI
24 X. Xia, J.R. Dahn, "$NaCrO_2$ is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes", Electrochem. Solid-State Lett., Vol. 15, No. 1, 2012, A1.   DOI
25 S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, "Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell", Electrochem. Commun., Vol. 21, 2012, 65.   DOI
26 L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, "High capacity, reversible alloying reactions in SnSb/C nano-composites for Na-ion battery applications", Chem. Commun., Vol. 48, 2012, 3321.   DOI
27 S.-I. Park, I. Gocheva, S. Okada, J. Yamaki, "Electrochemical properties of $NaTi_2(PO_4)_3$ anode for rechargeable aqueous sodium-ion batteries", J. Electrochem. Soc., Vol. 158, 2011, A1067.   DOI
28 P. Senguttuvan, M. Palacin, "$Na_2Ti_3O_7$: lowest voltage ever reported oxide insertion electrode for sodium ion batteries", Chem. Mater., Vol. 23, 2011, 4109.   DOI
29 C. Didier, M. Guignard, C. Denage, O. Szajwaj, S. Ito, I. Saasoune, J. Darriet, C. Delmas, "Electrochemical Na deintercalation from $NaVO_2$", Electrochem. Solid-State Lett., Vol. 14, 2011, A75.   DOI
30 O. Szajwaj, E. Gaudin, F. Weill, J. Darriet, C. Delmas, "Investigation of the new P'3-$Na_{0.6}VO_2$ phase: structural and physical properties", Inorg. Chem., Vol. 48, 2009, 9147.   DOI
31 V. Chevrier, G. Ceder, "Challenges for Na-ion negative electrodes", J. Electrochem. Soc., Vol. 158, 2011, A1011.   DOI