DOI QR코드

DOI QR Code

Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin

이온교환수지를 이용한 알칼리 금속 이온 및 염소 이온의 제거

  • Lee, Kyung-Han (Graduation School, Department of Green Energy, Hoseo University) ;
  • Kil, Bo-Min (Graduation School, Department of Green Energy, Hoseo University) ;
  • Ryu, Cheol-Hwi (Graduation School, Department of Green Energy, Hoseo University) ;
  • Hwang, Gab-Jin (Graduation School, Department of Green Energy, Hoseo University)
  • 이경한 (호서대학교 일반대학원 그린에너지공학과) ;
  • 길보민 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2020.08.04
  • Accepted : 2020.08.26
  • Published : 2020.08.31

Abstract

A research was conducted on the removal of ion from the solution involving the alkali metal ion and chlorine ion using ion exchange resin. The cation exchange resin and anion exchange resin was used for the remove of metal ion (Na+ and K+) and chlorine ion (Cl-), respectively. In the case of solution A (involving 36,633 ppm of Na+ and 57,921 ppm of Cl-), the Na+ ion and Cl- ion were removed over 99% within 20 min. In the case of solution B (involving 1,638 ppm of K+), the K+ ion was removed over 99% within 3 min.

알칼리 금속 이온과 염소 이온이 포함된 용액으로부터 이온교환수지를 이용한 이온 제거에 대한 연구를 진행하였다. 양이온인 금속이온(Na+와 K+)의 제거에는 양이온교환수지를, 음이온인 염소 이온(Cl-)의 제거에는 음이온교환수지를 사용하였다. 용액 A (Na+를 36,633 ppm, Cl-를 57,921 ppm 함유)의 경우, Na+ 이온과 Cl- 이온은 20분 이내에 99% 이상 제거되었다. 용액 B (K+를 1,638 ppm 함유)의 경우, K+ 이온은 3분 이내에 99% 이상 제거되었다.

Keywords

References

  1. D. W. Lee, J. S. Bae, Y. J. Lee, S. J. Park, J. C. Hong, B. H. Lee, C. H. Jeon, and Y. C. Choi, "Two-in-One fuel combining sugar cane with low rank coal and its $CO_2$ reduction effects in pulverized-coal power plants", Environ. Sci. Technol., 47, 1704 (2013). https://doi.org/10.1021/es303341j
  2. J. S. Bae, D. W. Lee, Y. J. Lee, S. J. Park, J. H. Park, J. C. Hong, J. G. Kim, S. P. Yoon, H. T. Kim, C. Han, and Y. C. Choi, "Improvement in coal content of coal-water slurry using hybrid coal impregnated with molasses", Powder Technol., 254, 72 (2014). https://doi.org/10.1016/j.powtec.2013.12.032
  3. S. J. Park, D. W. Lee, Y. J. Lee, J. S. Bae, J. C. Hong, J. G. Kim, J. H. Park, J. H. Park, J. S. Shin, and Y. C. Choi, "Hybrid fuel preparation combining glycerol-derived hydrogel and coal and its characterization", Ind. Eng. Chem. Res., 52, 16206 (2013). https://doi.org/10.1021/ie402459v
  4. J. S. Bae, D. W. Lee, Y. J. Lee, S. J. Park, J. H. Park, J. G. Kim, C. Han, and Y. C. Choi, "An investigation of the evaporation behavior of bioliquid in the pores and its application to hybrid coal combining biomass with coal", Appl. Therm. Eng., 90, 199 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.025
  5. M. C. Shin, Y. C. Choi, and J. H. Park, "Development of ceramic membrane for metal ion separation of lignin extract from pulp process", Membr. J., 27(2), 199 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.199
  6. J. Wang, C. Li, K. Sakanishi, T. Nakazatob, H. Taob, T. Takanohashia, T. Takaradac, and I. Saito, "Investigation of remaining major and trace elements in clean coal generated by organic solvent extraction", Fuel, 84, 12 (2005).
  7. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_2$-back flushing in multi channels ceramic microfilteration system for paper wastewater treatment", Membr. J., 16(1), 31 (2006).
  8. A.-S. Jonsson and O. Wallberg, "Cost estimates of kraft lignin recovery by ultrafiltration", Desalination, 237, 254 (2009). https://doi.org/10.1016/j.desal.2007.11.061
  9. L. M. Nevareza, L. B. Casarrubiasb, O. S. Cantoa, A. Celzardc, V. Fierroc, R. I. Gomeza, and G. G. Sancheza, "Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification", Carbohy. Poly., 86, 732 (2011). https://doi.org/10.1016/j.carbpol.2011.05.014
  10. A. Toledano, L. Serrano, A. Garcia, I. Mondragon, and J. Labidi, "Comparative study of lignin fractionation by ultrafiltration and selective precipitation", Chem. Eng. J., 157, 93 (2010). https://doi.org/10.1016/j.cej.2009.10.056
  11. A. Arkell, J. Olsson, and O. Wallberg, "Process performance in lignin separation from softwood black liquor by membrane filtration", Chem. Eng. Res. Des., 92, 1792 (2014). https://doi.org/10.1016/j.cherd.2013.12.018
  12. H. Werhan, A. Farshori, and P. R. von Rohr, "Separation of lignin oxidation products by organic solvent nanofiltration", J. Membr. Sci., 423-424, 404 (2012). https://doi.org/10.1016/j.memsci.2012.08.037
  13. H. R. Ghatak, "Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor", Industrial Crops and Products, 28, 206 (2008). https://doi.org/10.1016/j.indcrop.2008.02.011
  14. W. Jina, R. Tolbaa, J. Wena, K. Lib, and A. Chena, "Efficient extraction of lignin from black liquor via a novel membrane-assisted electrochemical approach", Electrochimica Acta, 107, 611 (2013). https://doi.org/10.1016/j.electacta.2013.06.031
  15. D. H. Phillips, B. Gu, D. B. Watson, and C. S. Parmele, "Uranium removal from contaminated groundwater by synthetics resins", Water Res., 42, 260 (2008). https://doi.org/10.1016/j.watres.2007.07.010
  16. F. Arroyo, J. Morillo, J. Usero, D. Rosado, and H. E. Bakouri, "Lithium recovery from desalination brines using specific ion-exchange resins", Desalination, 468(15), 114073 (2019). https://doi.org/10.1016/j.desal.2019.114073
  17. P. C. C. Siu, L. F. Koong, J. Saleem, J. Barford, and G. Mckay, "Equilibrium and kinetics of copper ions removal from wastewater by ion exchange", Chinese J. Chem. Eng., 24, 94 (2016). https://doi.org/10.1016/j.cjche.2015.06.017
  18. S. Gamez, K. Garces, E. d. L. Torre, and A. Cuevara, "Precious metals recovery from waste printed circuit boards using thiosulfate leaching and ion exchange resin", Hydrometallurgy, 186, 1 (2019). https://doi.org/10.1016/j.hydromet.2019.03.004
  19. R. K. Nekouei, F. Pahlevani, M. Assefi, S. Maroufi, and V. Sahajwalla, "Selective isolation of heavy metals from spent electronics waste solution by macroporous ion exchange resins", J. Hazard. Mat., 371(5), 389 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.013
  20. J. Sun, X. Li, Y. Quan, Y. Yin, and S. Zheng, "Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins", Chemosphere, 136, 181 (2015). https://doi.org/10.1016/j.chemosphere.2015.05.002
  21. M. M. Hassan and C. H. Carr, "A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents", Chemosphere, 209, 201 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.043
  22. D. H. Shin, J. W. Rhim, S. K. Park, C. H. Seo, and H. H. Park, "How to remove radioactive ions in radioactive waste", Membr. J., 25(6), 478 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.478
  23. M. Bassandeh, A. Antony, P. Le-Clech, D. Richardson, and G. Leslie, "Evaluation of ion exchange resins for the removal of dissolved organic matter from biologically treated paper mill effluent", Chemosphere, 90, 1461 (2013). https://doi.org/10.1016/j.chemosphere.2012.09.007
  24. Y. Zhang, S. Nie, X. Wang, W. Zhang, L. Lagerquist, M. Qin, S. Willfor, C. Xu, and P. Fatehi, "Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles", Chem. Eng. J., 372, 82 (2019). https://doi.org/10.1016/j.cej.2019.04.111
  25. Catalog of Iontec Co. (http://www.iontec.co.kr).