• 제목/요약/키워드: Ion damage

검색결과 412건 처리시간 0.032초

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

이온 주입 시의 점결함 발생과 재결합에 관한 3차원 몬테 카를로 모델링 및 시뮬레이션 (Three-dimensional monte carlo modeling and simulation of point defect generation and recombination during ion implantation)

  • 손명식;황호정
    • 전자공학회논문지D
    • /
    • 제34D권5호
    • /
    • pp.32-44
    • /
    • 1997
  • A three-dimensional (3D) full-dynamic damage model for ion implantation in crystalline silicon was proposed to calculate more accurately point defect distributions and ion-implanted concentration profiles during ion implantation process. The developed model was based on the physical monte carlo approach. This model was applied to simulate B and BF2 implantation. We compared our results for damage distributions with those of the analytical kinchin-pease approach. In our result, the point defect distributions obtained by our new model are less than those of kinchin-pease approach, and the vacancy distributions differ from the interstitial distributions. The vacancy concentrations are higher than the interstitial ones before 0.8 . Rp to the silicon surface, and after the 0.8 . Rp to the silicon bulk, the interstitial concentrations are revesrsely higher than the vacancy ones.The fully-dynamic damage model for the accumulative damage during ion implantation follows all of the trajectories of both ions and recoiled silicons and, concurrently, the cumulative damage effect on the ions and the recoiled silicons are considered dynamically by introducing the distributon probability of the point defect. In addition, the self-annealing effect of the vacancy-interstitial recombination during ion implantation at room temperature is considered, which resulted in the saturation level for the damage distribution.

  • PDF

고내구성콘크리트의 염해저항성에 관한 실험적 연구 (An Experimental Study on the Salt Damage Resistance of High Durable Concrete)

  • 윤재환;정재동
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

집속 이온빔을 이용한 투과 전자 현미경 시편의 표면 영향에 관한 연구 (Study on Surface Damage of Specimen for Transmission Electron Microscopy(TEM) Using Focused Ion Beam(FIB))

  • 김동식
    • 전자공학회논문지 IE
    • /
    • 제47권2호
    • /
    • pp.8-12
    • /
    • 2010
  • TEM(Transmission Electrion microsopy) 투과전자현미경은 재료의 기초 구조 분석과 반도체 또는 생물시편의 미세 구조분석에 널리 사용되는 장비이다. TEM 분석은 필수적으로 목적에 부합되는 적절한 시편제작이 수반되어야 한다. 다양한 전자 현미경 시편 제작 방법 중 본 논문에서는 FIB(Focus Ion Beam)를 이용한 시편 제작법 중 시편에 입사되는 에너지와 이온 Gun과 시편과의 상호 각도, 이온 밀링 깊이 조절 등의 실험을 통하여 표면 손상 최소화를 벌크 웨이퍼와 패턴화된 시편에서 실험하였다. 최소화된 표면 영향성(약 5nm)을 패턴화된 시편에 구현하였다.

Trigeminal somatosensory evoked potential test as an evaluation tool for infraorbital nerve damage

  • Hong, Woo Taik;Choi, Jin-hee;Kim, Ji Hyun;Kim, Yong Hun;Yang, Chae-Eun;Kim, Jiye;Kim, Sug Won
    • 대한두개안면성형외과학회지
    • /
    • 제20권4호
    • /
    • pp.223-227
    • /
    • 2019
  • Background: Neurosensory changes are frequently observed in the patients with mid-face fractures, and these symptoms are often caused by infraorbital nerve (ION) damage. Although ION damage is a relatively common phenomenon, there are no established and objective methods to evaluate it. The aim of this study was to test whether trigeminal somatosensory evoked potential (TSEP) could be used as a prognostic predictor of ION damage and TSEP testing was an objective method to evaluate ION injury. Methods: In this prospective TSEP study, 48 patients with unilateral mid-face fracture (only unilateral blow out fracture and unilateral zygomaticomaxillary fracture were included) and potential ION damages were enrolled. Both sides of the face were examined with TSEP and the non-traumatized side of the face was used as control. We calculated the latency difference between the affected and the unaffected sides. Results: Twenty-four patients recovered within 3 months, and 21 patients took more than 3 months to recover. The average latency difference between the affected side and unaffected side was 1.4 and 4.1 ms for the group that recovered within 3 months and the group that recovered after 3 months, respectively. Conclusion: Patients who suffered ION damage showed prolonged latency when examined using the TSEP test. TSEP is an effective tool for evaluation of nerve injury and predicting the recovery of patients with ION damage.

XPS STUDY ON THE EFFECT OF LOW-ENERGY ELECTRON IRRADIATION ON DNA DAMAGE BY Fe3+ ION

  • Noh, Hyung-Ah;Park, Yeun-Soo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • 제40권2호
    • /
    • pp.87-91
    • /
    • 2015
  • We have employed X-ray photoelectron spectroscopy (XPS) technique to examine the combined effects of low-energy electron (LEE) irradiation and $Fe^{3+}$ ion on DNA damage. pBR322 plasmid DNA extracted from E. coli ER2420 was used for preparing DNA-$Fe^{3+}$ sample. The C1s XPS spectra were scanned for LEE-irradiated and LEE-unirradiated samples and then curve-fitted. For the samples with LEE irradiation only or with Fe ion only, no significant changes from pure DNA samples were observed - a single effect of either $Fe^{3+}$ ion or LEE irradiation did not cause a significant damage. However, when these two components were combined, the DNA damage was increased quite significantly, compared to the sum of DNA damages caused by $Fe^{3+}$ ion and by LEE irradiation independently. This observation is consistent with our previous results [Radiat. Res. 177, 775 (2012)] which was done using gel-electrophoresis technique. Partial interpretation of the observed spectrum peaks was also attempted.

이온주입이 PZT 박막의 결정화에 미치는 영향 (Effect of Ion Damage on the Crystallization of PZT thin films)

  • 박응철;이장식;박정호;이병일;주승기
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.418-424
    • /
    • 2000
  • Effects of Ar ion damage prior to the phase transformation from pyrochlore to perovskite structure of PZT thin films have been investigated. As the degree of damage increased by increasing the acceleration voltage in the ion mass doping system, the phase transformation temperature decreased such that the temperature could be lowered down to 550$^{\circ}C$ when the film was damaged at 15 kV for 5 minutes. When the film was damaged prior to the heat treatment grain size of the perovskite thin films became less than 300${\AA}$. It turned out that relatively high value of the remanent polarization (about 30${\mu}$C/$\textrm{cm}^2$) as well as improvement of the fatigue characteristics to a large extent is closely related to the fine grain size of thus obtained PZT films.

  • PDF

16Cr-10Ni-2Mo 스테인리스강의 정전류 실험에 의한 플라즈마 이온질화 온도 변수에 따른 부식 특성 (Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.91-97
    • /
    • 2017
  • The aim of this paper is to investigate the characteristics of electrochemical corrosion with the plasma ion nitriding temperature for 16Cr-10Ni-2Mo stainless steel. The corrosion behavior was analyzed by means of galvanostatic experiment in natural seawater that applied various current density with plasma ion nitriding temperature parameters. In result of galvanostatic experiment, relatively less surface damage morphology and the less damage depth was observed at a nitrided temperature of $450^{\circ}C$ that measured the thickest nitrided layer(S-phase). On the other hand, the most damage depth and unified corrosion behavior presented at a temperature of $500^{\circ}C$.

국부 셀 격자 결함 모델을 사용한 극 저 에너지 이온 주입에 관한 연구 (A Study on the Ultra-Low Energy Ion Implantation using Local Cell Damage Accumulation Model)

  • 권오근;강정원;황호정
    • 전자공학회논문지D
    • /
    • 제36D권7호
    • /
    • pp.9-16
    • /
    • 1999
  • 본 논문은 극 저 에너지 이온 주입의 원자단위 연구를 위하여 국부 셀 격자결함 축적 모델(local cell damage accumulation model)을 제안하고, 분자 역학 방법(molecular dynamics method)을 사용한 이온 주입 시뮬레이션 결과를 보여주고 있다. 국부 격자 결함 확률 축적 함수는 각 단위 셀에 축적된 에너지, 이온빔 전류, 기판 물질, 주입 이온과 이온 발생 순서 등으로 구성되어 있다. 시뮬레이션 결과는 SIMS 측정치 및 다른 분자 역학 시뮬레이션과 잘 일치한다. 격자결함을 고려하지 않는 MDRANGE는 격자결함으로 인한 채널링 억제 효과가 나타나지 않기 때문에 불순물 분포의 꼬리 부분에서 많은 차이를 보였다. 또한 국부 격자결함 축적 모델을 사용한 경우와 이를 고려하지 않는 경우의 불순물과 격자결함에 관한 2차원 분포를 계산하여 국부적으로 축적된 격자결함이 이온의 진행에 큰 영향을 미치는 것으로 나타났다.

  • PDF

투과전자현미경분석용 박편 제작 시 집속이온빔에 의한 광물 손상 (Damage of Minerals in the Preparation of Thin Slice Using Focused Ion Beam for Transmission Electron Microscopy)

  • 정기영
    • 한국광물학회지
    • /
    • 제28권4호
    • /
    • pp.293-297
    • /
    • 2015
  • 집속이온빔(FIB, focused ion beam)법은 광물 및 지질시료의 분석 대상 위치로부터 투과전자현미경(TEM, transmission electron microscope) 관찰을 위한 박편을 정밀하게 제작할 수 있는 방법으로 널리 보급되고 있다. 그러나 박편 제작과정에서 Ga 이온빔에 의한 구조 손상이나 인위적 효과들이 발생하여 전자빔에 의한 손상과 함께 TEM 분석에서의 난점들 중 하나이다. 광물 시료 FIB 박편의 TEM 관찰에서 석영과 장석의 비정질화, 커튼 효과, Ga 오염 등이 확인되었으며, 특히 입자 경계 부근이나 두께가 얇은 곳에서 이들 현상이 보다 뚜렷하다. 박편 제작 시의 가속전압 및 전류 조정 등의 분석절차 개선으로 이온빔 손상을 줄일 수 있으나, 어느 정도의 손상이나 오염은 피할 수 없으므로 TEM 박편 관찰과 해석에서 유의하여야 한다.