• Title/Summary/Keyword: Ion assisted beam

Search Result 168, Processing Time 0.037 seconds

A Study on the Tribological Characteristics of Thermally Evaporated Silver Films Assisted by Atomic Mixing (원자혼합법으로 증착된 은 박막의 트라이볼로지적 특성에 관한연구)

  • 양승호;공호성;윤희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • A new functionally gradient metal coating method using an atomic mixing technique was developed. In this work the effect of silver atomic mixing on the tribological characteristics of silver$.$ films. has been investigated experimentally. Atomic mixing was implemented by using the, bombardment .of accelerated Ar ions during the thermal evaporation coating process of silver films. Experiments were performed in dry conditions using a ball-on-disk test rig at a load range of 19.6 mN - 17.64 N and a sliding velocity of 20 mm/sec. Results showed that the life of functionally gradient silver coating was enhanced about 100 times more than that of thermally evaporated silver coating and 2 times more than that of IBAD silver coating. The functionally gradient. film also showed low friction and wear compared to those of the evaporated silver and

  • PDF

Bone apposition on implants coated with calcium phosphate by ion beam assisted deposition in oversized drilled sockets: a histologic and histometric analysis in dogs

  • Kim, Min-Soo;Jung, Ui-Won;Kim, Sungtae;Lee, Jung-Seok;Lee, In-Seop;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the osseointegration of calcium phosphate (CaP)-coated implants by ion beam assisted deposition with a lack of primary stability. Methods: A total of 20 CaP-coated implants were bilaterally placed in the mandible of five dogs. In the rotational implant group, the implants were inserted in oversized drilled sockets without mechanical engagement, while the conventional surgical protocol was followed in the control group. Each group was allowed to heal for 4 and 8 weeks. The bone-to-implant contact (BIC, %) was measured by a histometric analysis. Results: All of the implants were well-maintained and healing was uneventful. In the histologic observation, all of the implants tested were successfully osseointegrated with a high level of BIC at both observation intervals. There was no significant difference in BIC among any of the groups. Conclusions: Within the limitation of this study, successful osseointegration of CaP-coated implants could be achieved in unfavorable conditions without primary stability.

Characterization of photonic quantum ring devices manufactured using wet etching process (습식 식각 공정을 이용하여 제작된 광양자테 소자의 특성 분석)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.28-34
    • /
    • 2020
  • A structure in which GaAs and AlGaAs epilayers are formed with a metal organic chemical vapor deposition equipment on a GaAs wafer similar to the structure of making a vertical cavity surface emitting laser is used. Photonic Quantum Ring (PQR) devices that are naturally generated by 3D resonance are manufactured by chemically assisted ion beam etching technology, which is a dry etching method. A new technology that can be fabricated has been studied, and as a result, the possibility of wet etching of a solution containing phosphoric acid, hydrogen peroxide and methanol was investigated, and the device fabrication by applying this method are also discussed. In addition, the spectrum of the fabricated optical device was measured, and the results were theoretically analyzed and compared with the wavelength value obtained by the measurement. It is expected that the PQR device will be able to model cells in a three-dimensional shape or be applied to the display field.

Optical Properties of $TiO_2$ Thin Films Prepared by Ion-beam Assisted Deposition (이온빔 보조 증착법에 의해 제작된 $TiO_2$ 박막의 광학적 특성)

  • 조현주;이홍순;황보창권;이민희;박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 1994
  • Optical properties of $TiO_2$ thin films prepared by ion-beam assisted deposition(1BAD) were investigated. The result shows that the refractive index of IBAD TiOL thin films measured by an envelope method is closer to that of the corresponding bulk than that of conventionally deposited $TiO_2$ thin films and the packing density of IBAD $TiO_2$ thin films measured by a vacuum-to-air spectral shift of films increases drastically. The vacuum-to-air spectral shift of an IBAD $(TiO_2/SiO_2)$ multilayer interference filter was negligible as compared to that of a conventional interference filter and so the IBAD filter is denser and more stable optically than the conventional filter. Also it is observed that the IBAD and conventional $TiO_2$ thin films are stoichiometric and amorphous.

  • PDF

Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering (직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.

Design and Analysis of GAIVAE System and Application to the Growth of Semiconductor Thin Films -On the Growth of GaAs on Si-

  • Kang, Ey-Goo;Sung, Man-Young;Park, Sung-Hee
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.110-116
    • /
    • 1998
  • A single-crystalline epitaxial film of GaAs has been grown on Si using a gs assisted-ionized vapour beam eptaxial technique. The native oxide layer on the silicon substrate was removed at 550$^{\circ}C$ by use of an accelerated arsenic ion beam, instead of a high-temperature desorption. During the growth the substrate temperature was maintained at 550$^{\circ}C$. Transmission electron microscopy and electron diffraction data suggest that the GaAs layer is an epitaxially grown single-crystalline layer. The possibility of growing device quality GaAs on Si is able demonstrated through fabrication of GaAs MODFET on Si substrates.

  • PDF

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF