• Title/Summary/Keyword: Ion Transport

Search Result 466, Processing Time 0.026 seconds

FT-Raman Studies on Ionic Interactions in ${\pi}$-Complexes of Poly(hexamethylenevinylene) with Silver Salts

  • Kim Jong-Hak;Min Byoung-Ryul;Won Jong-Ok;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • Remarkably high and stable separation performance for olefin/paraffin mixtures was previously reported by facilitated olefin transport through ${\pi}$-complex membranes consisting of silver ions dissolved in poly(hexamethylenevinylene) (PHMV). In this study, the ${\pi}$-complex formation of $AgBF_4,\;AgClO_4\;and\;AgCF_{3}SO_3$ with PHMV and their ionic interactions were investigated. FT-Raman spectroscopy showed that the C=C stretching bands of PHMV shifted to a lower frequency upon incorporation of silver salt, but the degree of peak shift depended on the counter-anions of salt due to different complexation strengths. The symmetric stretching modes of anions indicated the presence of only free ions up to [C=C]:[Ag]=1:1, demonstrating the unusually high solubility of silver salt in PHMV. Above the solubility limit, the ion pairs and higher-order ionic aggregates started to form. The coordination number of silver ion for C=C of PHMV was in the order $AgBF_4$ > $AgClO_4$ > $AgCF_{3}SO_3$, but became similar at [C=C]:[Ag]=1:1. The different coordination number was interpreted in terms of the different transient crosslinks of silver cations in the complex, which may be related to both the interaction strength of the polymer/silver ion and the bulkiness of the counteranion.

A Study on the Preparation of Metal-Ion Separation Membrane with Hydrophilic Polyphosphazenes (친수성 포스파젠 고분자를 이용한 금속 이온 분리막 제조에 관한 연구)

  • Kwon, Suk-Ky;Lee, Byung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.445-449
    • /
    • 1999
  • Hydrophilic polyphosphazenes were synthesized from hydrophobic polyphosphazenes by adding methoxyethylenoxy side chains and cast by dip-coating method into membranes supported on porous polypropylene mesh filter sheet for metal separation testing. A solution of $Cr^{3+},\;Co^{2+},\;Mn^{2+}$ nitrates was used in diffusion experiments which were conducted from $25^{\circ}C$ to $60^{\circ}C$. lt was found that the ion transport properties were increased as the repeating number of ethylenoxy side chain increased. Membrane from trifluoroethoxy methoxyethoxyethoxyethoxy co-substituted polyphosphazenes was found to separate $Cr^{3+}$ ion from $Mn^{2-}$ and $Co^{2+}$ ions with separation factor of 4.5 at $60^{\circ}C$.

  • PDF

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

Evaluation Modeling Heat Generation Behavior for Lithium-ion Battery Using FEMLAB (FEMLAB을 이용한 리튬이온전지의 발열특성 평가모델링)

  • Lee, Dae-Hyun;Yoon, Do-Young
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.320-324
    • /
    • 2012
  • In the present study, the discharge characteristics of a lithium-ion battery was evaluated to calculate the rate of heat generation under various discharge rates by mathematical modeling. The modeling and simulation of a pseudo-two dimensional ionic transport system for governing Butler-Volmer equation were carried out by using FEMLAB as a PDE (partial differential equation) solver, where the discharge rate was changed from 5 $A/m^2$ to 25 $A/m^2$. The computational results showed that the concentration of consumed solid-phase lithium at the surface of electrode was increased with increasing discharge rates. While the resulting diffusion limitation occurred shortly, it increased the rate of heat generation even more rapidly for the internal voltage to approach the cutoff voltage of the lithium-ion battery.

Concentration Polarization Phenomena in Ion-Exchange Membranes (이온교환막에서의 농도분극 현상)

  • 최재환;문승현
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2002
  • Electrodialysis(ED) is a reliable and effective process for the separation and concentration of ionic compounds. However, commercial uses of ED are often hindered by the cost of the stack that mainly resulted from the ion-exchange membrane cost. In order to minimize the membrane cost, it is desired to operate ED at the highest practicable current density. In an actual ED system the high current operation is limited by the concentration polarization phenomenon. This article illustrates the transport phenomena of ions through ion exchange membranes using current-voltage relations as a characterizing method. Also recent studies on electroconvection and water-spitting phenomena caused by concentration polarization were reviewed.

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery (카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재)

  • Nam, Sanghee;Umrao, Sima;Oh, Saewoong;Oh, Il-Kwon
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.296-300
    • /
    • 2019
  • Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.

Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes (리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구)

  • Jinhee Lee;Ji-Yoon Jeong;Jaeyun Ha;Yong-Tae Kim;Jinsub Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.

A Study on Active Ion Transport Technology to Improve Water Electrolysis System Performance (수전해 시스템 성능 향상을 위한 능동 이온수송 기술 연구)

  • HYEON-JUNG KIM;HAO GUO;SANG-YOUNG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.132-140
    • /
    • 2023
  • In this study, rotary magnet holder (RMH) was manufactured to analyze the ion transport effect according to the rotating magnetic field for the hydrogen production efficiency by alkaline water electrolyte. In the experiment, the voltage signal according to the magnet arrangement inside the RMH, the rotation speed, and the rotation time was measured using the voltage measurement module. As a result of the voltage signal measurement experiment, the average potential difference increased as the rotation speed of the RMH increased. Through the results of the voltage signal measurement experiment, the most efficient magnet arrangement (case 2) was applied to the RMH to conduct a water electrolysis experiment. A 20% NaOH aqueous solution was filled in the electrolytic cell, and a direct current 2 V constant voltage was applied to measure the current value according to the RMH rotation to compare the hydrogen generation amount. When rotating at 100 RPM, the hydrogen production efficiency increased by 8.06% compared to when not rotating. Considering the area exceeding +25 mA, which was not measured at the beginning of the experiment, an increase in hydrogen production of about 10% or more can be expected.

EO Performances of the Ion Beam Aligned TN-LCD on a Carbon Nitride Thin Film Surface

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Jong-Bok;Kim, Kyung-Chan;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1121-1124
    • /
    • 2004
  • Carbon Nitride exhibits high electrical resistivity and thermal conductivity that are similar to the properties shown by diamond-like carbon (DLC) films. These diamond-like transport properties in Carbon Nitride come in a material consisting of $sp^2$-bonded carbon versus the $sp^3$-carbon of DLC. The diamond-like properties and nondiamond-like bonding make NDLC an attractive candidate for applications. Liquid crystal (LC) alignment capabilities with ion beam exposure on carbon nitride thin films and Electro-Optical (EO) performances of the ion-beam aligned twisted nematic liquid crystal display (TN-LCD) with oblique ion beam exposure on the Carbon Nitride thin film surface were studied. An excellent uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the Carbon Nitride thin films was observed. In addition, the good EO properties of the ion-beam-aligned TN-LCD were achieved. Finally, we achieved the residual DC property of the ion-beam- aligned TN-LCD on the Carbon Nitride thin film.

  • PDF

Effect of TIBA on the Brassiolide-induced Gravitropic Response in the Primary Roots of Maize (옥수수 일차뿌리에서 TIBA가 brassinolide에 의해 유도된 굴중성 반응에 미치는 영향)

  • Kang, Byung-Hee;Park, Jea-Hye;Kim, Jong-Sik;Jang, Soo-Chul;Kim, Seung-Ki;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1139-1144
    • /
    • 2009
  • It has been known that brassiolide (BL) increased the positive gravitropic response and ethylene production in maize roots. This study examined the relationship between the BL-induced gravitropic response and ethylene Production. The ethylene production was inhibited to about 90% of the control by the treatment of $10^{-4}$ M aminoethoxyvinylglycine (AVG), the ethylene synthesis inhibitor. However, the gravitropic response did not show any significant changes compared to the control at $10^{-4}$ M AVG. In the case of treatment of AVG with BL, the ethylene production decreased to 60% of the control. However, the gravitropic response increased to the level which was induced by BL. Cobalt ions, another ethylene biosynthesis inhibitor, inhibited ethylene production, but not gravitropic response. When roots were treated with BL and cobalt ions, they showed the inhibition of ethylene production and promotion of gravitropic response. To elucidate the possibility that the effect of BL is related to auxin transport, roots were treated with TIBA (2,3,5-triiodobenzoic acid), an auxin transport inhibitor. Both treatment of TIBA alone and TIBA with BL stimulated ethylene production to about 96% and 132%, respectively. However, gravitropic response was completely inhibited in both treatments. Further, roots treated with BL in the presence of TIBA and IAA showed a negative gravitropic response, which means that IAA accumulates in the upper side of horizontal roots. Root elongation was also stimulated in this treatment. Taken together, these results suggest that BL might affect the differential distribution of internal IAA on roots, causing the regulation of positive gravitropic response.