• Title/Summary/Keyword: Ion Slip

Search Result 21, Processing Time 0.018 seconds

Ion Slip Effect on the Flow Due to a Rotating Disk with Heat Transfer

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2197-2202
    • /
    • 2006
  • The steady hydromagnetic flow due to a rotating disk is studied with heat transfer considering the ion slip. The governing equations are solved numerically using finite differences. The results show that the inclusion of the ion slip has important effects on the velocity distribution as well as the heat transfer.

Hall and Ion-Slip effects on magneto-micropolar fluid with combined forced and free convection in boundary layer flow over a horizontal plate

  • Seddeek, M.A.;Abdelmeguid, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.51-73
    • /
    • 2004
  • A boundary layer analysis is used to study the effects of Hall and ion-slip currents on the steady magneto-micropolar of a viscous incompressible and electrically conducting fluid over a horizontal plate. By means of similarity solutions, deviation of fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using the shooting method. The effects of various parameters of the problem, e.g. the magnetic parameter, Hall parameter, ion-slip parameter, buoyancy parameter and material parameter are discussed and shown graphically.

  • PDF

Microflow of dilute colloidal suspension in narrow channel of microfluidic-chip under Newtonian fluid slip condition

  • Chun Myung-Suk;Lee Tae Seok;Lee Kangtaek
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.207-215
    • /
    • 2005
  • We present a finite difference solution for electrokinetic flow in rectangular microchannels encompassing Navier's fluid slip phenomena. The externally applied body force originated from between the nonlinear Poisson-Boltzmann field around the channel wall and the flow-induced electric field is employed in the equation of motion. The basic principle of net current conservation is applied in the ion transport. The effects of the slip length and the long-range repulsion upon the velocity profile are examined in conjunction with the friction factor. It is evident that the fluid slip counteracts the effect by the electric double layer and induces a larger flow rate. Particle streak imaging by fluorescent microscope and the data processing method developed ourselves are applied to straight channel designed to allow for flow visualization of dilute latex colloids underlying the condition of simple fluid. The reliability of the velocity profile determined by the flow imaging is justified by comparing with the finite difference solution. We recognized the behavior of fluid slip in velocity profiles at the hydrophobic surface of polydimethylsiloxane wall, from which the slip length was evaluated for different conditions.

Effects of Dissolved Ca from Plaster Mold During Slip Casting on the Microstructure and Fracture Toughness of Sintered Alumina (석고 몰드에서 용출된 Ca이 주입성형 알루미나 소결체의 미세구조 및 파괴인성에 미치는 영향)

  • 박재관;임동기;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.1019-1025
    • /
    • 1991
  • The effect of dissolved Ca ion from plaster mold during slip casting on the microstructure and fracture toughness of high-purity sintered alumina were investigated. When the alumina slip containing 1000 ppm MgO was casted on a calcined alumina mold, the sintered compact had a homogeneous microstructure with equiaxed grains. However, when the same slip was casted on a plaster mold, the sintered compact consisted of the mixture of equiaxed and elongated grains. This inhomogeneous microstructure was also observed in the sintered alumina doped with 100o ppm MgO and 100 ppm CaO whose compact was prepared on the calcined alumina mold indicating that the inhomogeneity was caused by CaO. It was found that the specimen containing both MgO and CaO had higher fracture toughness than that containing MgO only. The enhanced fracture toughness by CaO is probably due to the crack deflection along the boundaries of the elongated grains.

  • PDF

The Effect of Suction and Injection on Unsteady Flow of a Dusty Conducting Fluid in Rectangular Channel

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1148-1157
    • /
    • 2005
  • In the present study, the unsteady Hartmann flow of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The fluid is acted upon by an external uniform magnetic field which is applied perpendicular to the plates. An analytical solution for the governing equations of motion is obtained to yield the velocity distributions for both the fluid and dust particles.

HYDROMAGNETIC ROTATING DISK FLOW OF A NON-NEWTONIAN FLUID WITH HEAT TRANSFER AND OHMIC HEATING

  • Attia, Hazem A.;Ewis, Karem M.;Abd Elmaksoud, Ibrahim H.;Awad-Allah, Nabil A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.169-180
    • /
    • 2012
  • The steady hydromagnetic flow of an electrically conducting non-Newtonian fluid due to the rotation of an infinite disk is studied with heat transfer with the inclusion of the ion slip as well as Ohmic heating. The governing nonlinear momentum equations and energy equations are solved using the finite difference method. The numerical results indicate the important effect of the ion slip and the non-Newtonian fluid characteristics on the velocity and temperature distributions.

A Study on Heavy Metal Removal Characteristics Using Bone Char (골탄(bone char)의 중금속 제거 특성에 관한 연구)

  • Kim, Jae-Young;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.253-258
    • /
    • 2007
  • The adsorption capacity of bone char for lead, cadmium and zinc was studied in both single and binary multiple component systems. Equilibrium experimental studies have been performed to determine the sorption capacity of bone char for each metal ion. These have been analysed using single and multi-component equilibrum models. The results show that the sorption of metal ions for multi-component systems can be predicted reasonably well from the IAS theory with the Langmuir equation, the Freundlich and the Slip equation for metal ions.

Experimental Study on Bond Stress-Slip Behavior of Reinforced Concrete Member Under Repeated Loading Considering Steel Corrosion (반복하중 하에서 철근부식을 고려한 철근콘크리트 부재의 부착응력-슬립 거동에 관한 실험적 연구)

  • Kim, Chul-Min;Kim, Jee-Sang;Park, Jong-Bum;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.545-548
    • /
    • 2006
  • This study includes the experimental investigation on the fatigue-bond behavior with respect to the various rates of steel corrosion. Major criteria of test variables are the rates of steel corrosion by chloride ion and the ratio of the applied stress to the bond failure stress. According to the test results, the slip versus number of load cycles relation was found to be approximately linear in double logarithmic scale, not only without steel corrosion but also with steel corrosion. This research will be helpful for the realistic durability design and condition assessment of reinforced concrete structures.

  • PDF

Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1302-1308
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.