• Title/Summary/Keyword: Ion Irradiation

Search Result 453, Processing Time 0.039 seconds

Characteristics of BSCCO Thin Film by Layer-by-layer Deposition (순차 스퍼터 법에 의한 BSCCO 박막의 특성)

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Gwi-Yeol;Oh, Geum-Gon;Choi, Woon-Shik;Cho, Choon-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.281-283
    • /
    • 2001
  • $Bi_{2}Sr_{2}CuO_{x}$(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion bearn sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition. two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit. then three dimensional growth takes place. Since Cu element is the most difficult to oxidize. only Sr and Bi react with each other predominantly. and forms a buffer layer on the substrate in an amorphous-like structure. which is changed to $SrBi_{2}O_{4}$ by in-situ anneal.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

X-Ray Diffraction Measurements of Ion-Irradiated Graphite

  • Kim, Dae-Jong;Jang, Chang-Heui;Kim, In-Sup;Kim, Eung-Seon;Chi, Se-Hwan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.411-412
    • /
    • 2005
  • There are some differences as a result of comparison between internal and external standard method. Thin-film XRD was used to measure the thin damaged layer by proton irradiation. Experiment was performed by external standard method to measure bulk sample accurately. A little changes of crystallite size and lattice parameter by small dose were observed. X-ray penetrates too deeply above damaged layer of graphite despite of small X-ray incident angle.

  • PDF

Microwave-assisted Synthesis of Mixed Ligand Complexes of Zn(II), Cd(II) and Hg(II) Derived from 4-aminopyridine and Nitrite Ion: Spectral, Thermal and Biological Investigations

  • Dhaveethu, Karuthakannan;Ramachandramoorthy, Thiagarajan;Thirunavukkarasu, Kandasamy
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.341-351
    • /
    • 2013
  • Zn(II), Cd(II) and Hg(II) complexes with a general composition[$M(L)_2(X)_2$], where L=4-aminopyridine (4AP) and $X=NO_2{^-}$ were prepared under microwave irradiation. The metal complexes were characterized by elemental analyses, molar conductance, IR, Far-IR, electronic, NMR ($^1H$, $^{13}C$), XPS spectral and thermal studies. The spectroscopic studies reveal the composition, different modes of bonding, electronic transition, different chemical environment of C and H atoms and the electronic state of the metal atoms. On the basis of the characterization data, tetrahedral geometry is suggested for all the complexes. The free ligand (4-aminopyridine) and their metal complexes were screened against phytopathogenic fungi and bacteria in vitro and the activities were compared.

Epitaxial Growth of BSCCO Thin film Fabricated by Layer-by-layer Sputtering

  • Yang, Sung-Ho;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.212-217
    • /
    • 2000
  • Bi$_2$Sr$_2$CuO$_{x}$(Bi-2201) thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering(IBS) process. During the deposition, 14 wt%-ozone/oxygen mixture gas of typical pressure of 5.0$\times$10$^{-5}$ Torr is supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal that a buffer layer with compositions different from Bi-2201 is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.n.

  • PDF

Monofunctional Monomer Effects of The Reflection Mode & Transmission Mode of Holographic Polymer Dispersed Liquid Crystals

  • Park, Min-Sang;Cho, Young-Hee;Kim, Byung-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.75-80
    • /
    • 2001
  • Holographic polymer dispersed liquid crystals (HPDLCs) have fabricated by irradiating an Ar-ion laser ( ${\lambda}$=514nm) at various intensity on LC/acrylate monomer mixtures which were sandwitched between two ITO coated glass plates. Monomer systems were composed of dipentaerythritol-hydroxy penta acrylate (DPHPA, f=5)/monofunctional acrylate monofunctional monomers. The LC used in this system was E7 (BL001, Merck). Gratings were fabricated by periodic interference of twobeams. Reflection efficiency-irradiation intensity-monomer type relationships were obtained from the UV-visible spectra of the HPDLC films. Peaks were found at a bit smaller wavelength than 514nm, due to the shrinkage of mixture volume upon polymerization. Real time measurements of diffraction efficiency have been obtained according to monomer types and LC contents.

  • PDF

Switchable Holographic Polymer Dispersed Liquid Crystals for Full Color-Reflective Display

  • Cho, Young-Hee;Kim, Byung-Kyu;Kim, Jae-Chang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.91-95
    • /
    • 2001
  • Reflective holographic polymer dispersed liquid crystal(HPDLC) device has a multilayer structure consisting of alternate layers of polymer and liquid crystal droplets. Periodic modulation of a refractive index reflects light of a specific wavelength in accordance with Braggs law. Samples cured isotropically were illuminated with an Argon-ion lase at 514nm. We optimized the reflcetion efficiency of HPDLC as a function of monomer functionality, LC composition and irradiation intensity. The properties of the HPDLC films were observed by UV-visible spectroscopy. We found that the maximum reflection efficiency depends on the monomer functionality, LC composition, and laser intensity. We expect these films could be used in full-color reflective display by stacking them to obtain a mixture of colors.

  • PDF

Characteristics of BSCCO Thin Film by Layer-by-layer Deposition (순차 스퍼터 법에 의한 BSCCO 박막의 특성)

  • 이희갑;박용필;김귀열;오금곤;최운식;조춘남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.281-283
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$\_$x/(Bi-2201) thin films were fabricated layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to SrBi$_2$O$_4$ by in-situ anneal.

  • PDF

Characteristics of Bi2212 Thin Film Fabricated by Layer-by-Layer Deposition at an Ultra Low Growth rate (초저속 순차증착으로 제작한 Bi2212 박막의 특성)

  • Lee, Hee-Kab;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.119-121
    • /
    • 2002
  • $Bi_2Sr_2CuO_x$ thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method, 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

Epitaxy Growth of the Thin Films Fabricated by Layer by Layer Method (Layer by Layer 법으로 제작한 박막의 에피택셜 성장)

  • Kim, Tae-Gon;Cheon, Min-Woo;Yang, Sung-Ho;Park, Yong-Pil;Park, No-Bong;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.529-530
    • /
    • 2006
  • $Bi_2Sr_2CuO_x$ thin films have been fabricated by atomic layer-by-layer deposition using the ion beam sputtering method. During the deposition, 10 and 90 wt%-ozone/oxygen mixture gas of typical pressure of $1{\sim}9{\times}10^{-5}\;Torr$ are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF