• 제목/요약/키워드: Ion Current Density

검색결과 403건 처리시간 0.029초

0.1M $Na_2SO_4+ NaCl$ 수용액에서 마멸 전극 기법을 이용한 Fe-Cr강의 재부동태 특성 (Repassivation Characteristics of Fe-Cr Steels Using the Abrading Electrode Technique in Aqueous 0.1M $Na_2SO_4+ NaCl$ Solutions)

  • 함동호;이재봉
    • 전기화학회지
    • /
    • 제2권4호
    • /
    • pp.195-201
    • /
    • 1999
  • 탈기된 0.1 M $Na_2SO_4$ 수용액에서 Fe-Cr강의 재부동태 특성을 Cr함량, 인가전위 그리고 염소이온의 농도를 변화시키면서 관찰하였다. 염소이온이 없는 경우 재부동태 속도를 나타내는 식 log i=k-n log t에서 -n값은 Cr함량에 관계없이 -1에 수렴하였으나 Cr함량이 증가할수록 재부동태 전류밀도는 낮아졌다. A. C. impedance spectroscopy측정 결과, Cr 함량과 인가전위가 증가할수록 형성된 재부동태 피막의 charge transfer resistance$(R_{ct})$ 값은 상승하였다. 또한 재부동태 동안 흐르는 전류밀도를 Faraday식을 이용하여 피막의 두께를 계산해보면 Cr함량이 증가할수록 얇은 부동태 피막이 형성된다는 것을 알 수 있었다. 그러나 염소이온이 존재하는 경우, 염소이온이 Fe-Cr강의 재부동태를 방해하는 효과는 인가전위가 증가할수록 상승하였다.

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • 조봉준;정의덕;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.39-44
    • /
    • 1998
  • $LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.

계층적 다공구조를 갖는 Fe2O3 나노섬유의 리튬 이차전지 음극소재 적용 (Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries)

  • 조민수;조중상
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.267-273
    • /
    • 2019
  • 본 연구는 메조-, 마크로- 기공이 상호 연결된 계층적 다공구조를 갖는 $Fe_2O_3$ 나노섬유를 전기방사 및 후 열처리 과정을 통해 합성하였다. 구조체 내 마크로 기공은 $Fe(acac)_3$/polyacrylonitrile 연속상을 포함하는 섬유 내 분산상으로 존재하는 polystryrene을 열처리 과정 중 선택적으로 분해함으로써 생성시켰다. 또한, 전기방사 공정 동안 침투된 수분의 기화로 형성된 메조 기공은 마크로 기공과 상호연결되어 최종 계층적 다공구조를 갖는 $Fe_2O_3$ 나노섬유를 형성했다. 계층적 다공구조를 갖는 $Fe_2O_3$ 나노섬유의 초기 방전용량과 Coulombic 효율은 $1.0A\;g^{-1}$의 전류밀도에서 $1190mA\;h\;g^{-1}$, 79.2% 였으며, 1000 사이클 후의 방전 용량은 $792mA\;h\;g^{-1}$였다. 계층적 다공구조를 갖는 $Fe_2O_3$ 나노섬유는 높은 구조적 안정성과 형태학적 이점으로 인해 우수한 리튬 이온 저장 성능을 나타냈다.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

Hysteresis-free organic field-effect transistors with ahigh dielectric strength cross-linked polyacrylate copolymer gate insulator

  • Xu, Wentao;Lim, Sang-Hoon;Rhee, Shi-Woo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.48.1-48.1
    • /
    • 2009
  • Performance of organic field-effect transistors (OFETs) with various temperature-cured polyacrylate(PA) copolymer as a gate insulator was studied. The PA thin film, which was cured at an optimized temperature, showed high dielectric strength (>7 MV/cm), low leakage current density ($5{\times}10^{-9}\;A/cm^2$ at 1 MV/cm) and enabled negligible hysteresis in MIS capacitor and OFET. A field-effect mobility of ${\sim}0.6\;cm^2/V\;s$, on/off current ratio (Ion/Ioff) of ${\sim}10^5$ and inverse subthreshold slope (SS) as low as 1.22 V/decwere achieved. The high dielectric strength made it possible to scale down the thickness of dielectric, and low-voltage operation of -5 V was successfully realized. The chemical changes were monitored by FT-IR. The morphology and microstructure of the pentacene layer grown on PA dielectrics were also investigated and correlated with OFET device performance.

  • PDF

Li:Al cathode layer and its influence on interfacial energy level and efficiency in polymer-based photovoltaics

  • 박순미;전지혜;박오옥;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2010
  • Recent development of organic solar cell approaches the level of 8% power conversion efficiency by the introduction of new materials, improved material engineering, and more sophisticated device structures. As for interface engineering, various interlayer materials such as LiF, CaO, NaF, and KF have been utilized between Al electrode and active layer. Those materials lower the work function of cathode and interface barrier, protect the active layer, enhance charge collection efficiency, and induce active layer doping. However, the addition of another step of thin layer deposition could be a little complicated. Thus, on a typical solar cell structure of Al/P3HT:PCBM/PEDOT:PSS/ITO glass, we used Li:Al alloy electrode instead of Al to render a simple process. J-V measurement under dark and light illumination on the polymer solar cell using Li:Al cathode shows the improvement in electric properties such as decrease in leakage current and series resistance, and increase in circuit current density. This effective charge collection and electron transport correspond to lowered energy barrier for electron transport at the interface, which is measured by ultraviolet photoelectron spectroscopy. Indeed, through the measurement of secondary ion mass spectroscopy, the Li atoms turn out to be located mainly at the interface between polymer and Al metal. In addition, the chemical reaction between polymer and metal electrodes are measured by X-ray photoelectron spectroscopy.

  • PDF

Magnetic and Electric Properties of Multiferroic Ni-doped BiFeO3

  • 유영준;황지섭;박정수;이주열;강지훈;김기원;이광훈;이보화;이영백
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2014
  • Multiferroic materials have attracted much attention due to their own fascinating fundamental physical properties and potential technological applications to magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because the enhanced ferromagnetism was found by the Fe-site ion substitution with magnetic ions. The structural, the magnetic and the ferroelectric properties of polycrystalline $BiFe_{1-x}Ni_xO_3$ (x=0, 0.01, 0.02, 0.03 and 0.05), which were prepared by the solid-state reaction and the rapid-sintering method, have been investigated. The x-ray diffraction patterns reveal that all the samples are in single phase and show rhombohedral structure with R3c space group. The magnetic properties are enhanced according to the doping content. The Ni-doped $BiFeO_3$ samples exhibit lossy P-E loop due to the oxygen vacancy. The leakage current density of Ni-doped samples (x=0.01 and 0.02) is increased by four orders of magnitude. On the other hand, the x=0.03 and 0.05 samples show the relative reduction of the leakage current.

  • PDF

Modeling of Battery for EV using EMTP/ATPDraw

  • Kim, Jun-Hyeok;Lee, Soon-Jeong;Kim, Eung-Sang;Kim, Seul-Ki;Kim, Chul-Hwan;Prikler, Laszlo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.98-105
    • /
    • 2014
  • As environmentally friendly energy takes center stage, interests for Electric Vehicles/Plug in Hybrid Electric Vehicles (EVs/PHEVs) are getting increase. With this trend, there is no doubt EVs will take large portion to penetrations of total cars. Therefore, accurate EV modeling is required. Battery is one of the main components with the power system view of aspect. Hence, in this paper, reviews and discussions of some types of batteries for EV are contained by considering energy density and weight of the batteries. In addition, simulations of Li-Ion battery are accomplished with various variables such as temperature, capacity fading and charge/discharge current. It is confirmed that temperature is the main factor of capacity fading. Validation of the modeled battery is also conducted by comparing it with commercialized battery.

Fabrication and characterization of $YBa_2Cu_3O_7$ step-edge Josephson junctions prepared on sapphire substrates

  • Lim, Hae-Ryong;Kim, In-Seon;Kim, Dong-Ho;Park, Yong-Ki;Park, Jong-Chul
    • Progress in Superconductivity
    • /
    • 제1권2호
    • /
    • pp.146-150
    • /
    • 2000
  • Step edge Josephson junctions in c-axis oriented $YBa_2Cu_3O_7$ films were fabricated on $CeO_2$ buffered sapphire substrates. The step angle was controlled in the wide range of $20^{\circ}\sim75^{\circ}$ by the Ar ion milling technique. I-V curves of junction fabricated on the thickness ratio of $\sim$0.8 and the step angle of $35^{\circ}$ were exhibited RSJ-like behavior with $I_CR_N$ product of $\sim250{\mu}A$ and critical current density of $\sim2\times10^4A/cm^2$ at 77 K. Critical current of step edge junction was increased linearly with decreasing temperature but the normal resistance was almost constant. Total samples of step edge Josephson junction was satisfied a scaling behavior of $I_CR_N{\propto}(J_C)^{0.5}$.

  • PDF