• Title/Summary/Keyword: Ion Conductor

Search Result 69, Processing Time 0.03 seconds

A Study on the Metallic ion Migration Phenomena of PCB (PCB의 금속 이온 마이그레이션 현상에 관한 연구)

  • Hong Won Sik;Kang Bo-Chul;Song Byeong Suk;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2005
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. ion migration phenomena has been observed in the field of exposing the specific environment and using for a long tin e. This study was evaluated the generation time of ion migration and was investigated properly test method through water drop test and high temperature high humidity test. Also we observed direct causes and confirmed generation mechanism of dendritic growth as we reproduced the ion migration phenomena. We utilized PCB(printed circuit board) having a comb pattern as follows 0.5, 1.0, 2.0 mm pattern distance. Cu, SnPb and Au were electroplated on the comb pattern. 6.5 V and 15 V were applied in the comb pattern and then we measured the electrical short time causing by ion migration. In these results, we examined a difference of ion migration time depending on pattern materials, applied voltage and pattern spacing of PCB conductor.

Prediction and Analysis of Electrical Environmental Characteristics under ±500kV HVDC Double Bipole Transmission Line (±500kV HVDC 2회선 송전선로의 전기환경특성 예측 및 평가)

  • Woo, Jeong Min;Ju, Mun-No;Shin, Koo Yong;Kwon, Gu Min;Choi, Woo Jung;Lee, Jae Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.554-560
    • /
    • 2018
  • Since Korea has a small land area, it is expected to construct the conductor return type with neutral wire in the case of ${\pm}500kV$ HVDC double bipole transmission line. Therefore, in order to apply ${\pm}500kV$ HVDC double bipole transmission line with neutral wire in Korea, it is necessary to develop technology for insulation and environmental designs. In this study, radio interference, audible noise, electric field and ion current density according to the polarity arrangement were compared and assessed in the ${\pm}500kV$ HVDC double bipole transmission line with the conductor return method. And the optimum configuration of HVDC double bipole transmission line was determined from the viewpoint of electrical environment.

High temperature electrical properties of Sr-and Mg-Doped LaAlO3 (억셉터(Sr, Mg)가 첨가된 LaAlO3의 고온 전도 특성)

  • Park, Ji Young;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2019
  • Perovskite-type oxides have consistently attracted considerable attention for their applications in high-temperature electrochemical devices, such as electrolytes and electrodes of solid oxide fuel cells, oxygen permeating membranes and sensors etc. Among them, the electrical conductivity of 10 % Sr and 10 % Mg doped $LaAlO_3$ (LSAM9191) was measured using impedance spectroscopy and 4-probe d.c. method. Below $550^{\circ}C$, the grain boundary resistance mostly determined the overall conductivity; however, it nearly disappeared above $800^{\circ}C$. Using the defect model and curve fitting, the ionic and electronic conductivity contributions were also separated. In the temperature region where the sample resistance is mostly determined by the grain volume property, LSAM9191 was an oxygen ion conductor at low $Po_2$ and a mixed conductor at high $Po_2$. With increasing temperature, the ionic conduction region only slightly increased. Thus, LSAM9191 is a promising material as an oxygen ion conductor at high temperature and in low $Po_2$.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Studies on Ionic Conduction in Ce0.95Eu0.05P2O7 at Intermediate Temperatures

  • Wang, Hongtao;Sun, Lin;Luo, Chunhua;Fan, Suhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1465-1468
    • /
    • 2014
  • In this study, an intermediate temperature ionic conductor, $Ce_{0.95}Eu_{0.05}P_2O_7$, was prepared by solid state reaction. The variation of conductivities with the pressure $pH_2O$ or time were studied. The highest conductivity of $Ce_{0.95}Eu_{0.05}P_2O_7$ sample was observed in dry air atmosphere at $300^{\circ}C$ to be $1.1{\times}10^{-4}S{\cdot}cm^{-1}$ and in wet air atmosphere ($pH_2O=7.4{\times}10^3Pa$) at $100^{\circ}C$ to be $1.4{\times}10^{-3}S{\cdot}cm^{-1}$, respectively. The log ${\sigma}$ ~ log ($pO_2$) plot result indicated that $Ce_{0.95}Eu_{0.05}P_2O_7$ was almost a pure ionic conductor under high oxygen partial pressure and a mixed conductor of ion and electron under low oxygen partial pressure.

The Aqueous Corrosion Characteristics of Catenary Materials of Electric Railway System (전차선로 가선재의 수용액 부식 특성)

  • 김용기;장세기;조성일;이재봉
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as catenary materials of the electric railway system. Since these materials may be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important to investigate the corrosion rates in various corrosive environments. The aqueous corrosion characteristics of catenary materials in aerated acid, neutral and alkali solutions were studied by using immersion corrosion tests, electrochemical measurements and analytical techniques. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization, a.c impedance spectroscopy and galvanic corrosion tests were carried out with these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effects on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

Analysis of the Ionized Fields around HVDC Transmission Line by the Use of the Charge Simulation Method (전하중첩법을 이용한 직류 송전선 주변 이온장 해석)

  • Min Suk-Won;Song Ki-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.478-485
    • /
    • 2005
  • This paper analysed the ionized fields around HVDC transmission line by the use of the charge simulation method. As this is very complex and expressed by a non-linear partial differential equations, it is hard to solve problems analytically. So, we developed a computer program which can apply in multi-polar HVDC transmission line with conductor bundles and calculated conductor surface gradient, corona current density and ion charge density to prove validity of a proposed algorithm in this paper.

  • PDF

The Polyaniline Electrode Doped with Li Salt and Protonic Acid in Lithium Secondary Battery

  • Ryu, Kwang-Sun;Kim, Kwang-Man;Hong, Young-Sik;Park, Yong-Joon;Jang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1144-1148
    • /
    • 2002
  • We prepared the polyaniline (Pani) film and powder by chemical polymerization and doping with different dopants and also investigated the capability of Li//polyaniline cells after assembling. The oxidation/reduction potentials and electrochemical reaction of Li//polyaniline cells were tested by cyclic voltammetry technique. The Li//Pani-HCl cells with 10% and 20% conductors show a little larger specific discharge capacities than that without conductor. The highest discharge capacity of almost 50 mAh/g at 100th cycle is also achieved. However, Li//Pani-LiPF6 with 20% conductor shows a remarkable performance of ~90 mAh/g at 100th cycle. This is feasible value for using as the positive electrode material of lithium ion secondary batteries. It is also proved that the powder type electrode of Pani is better to use than the film type one to improve the specific discharge capacity and its stability with cycle.

Recent Progress on Ionically Conductive Polymer Electrolyte for Electronic Skin Sensors

  • Kim, Jeong Hui;Jeong, Jung-Chae;Lee, Keun Hyung
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.117-123
    • /
    • 2021
  • Electronic skin (or E-skin) is an artificial smart skin composed of one or more than two sensors. E-skins detect external stimuli and convert them into electrical signals. Various types of E-skin sensors exist, including mechanical, physical, and chemical, depending on the detection signals involved. For wearable E-skins with superior sensitivity and reliability, developing conductors that possess both good elasticity and sensitivity is essential. Typical electrical conductors used in these sensors show very high sensitivity, but they have drawbacks such as non-linearity, irreversibility, and a narrow sensing range. To address these issues, stretchable and lightweight ionic conductors have been actively used in E-skin applications. This study summarizes the recent progress on various types of ionic conductors and ionic-conductor-based E-skin sensors.

Analysis of Electric field and Ion Characteristics on HVDC Overhead Transmission Line (초고압 직류가공 송전선로에서의 전계 및 이온류 특성분석)

  • Lim, Jae-Seop;Shin, Koo-Yong;Lee, Dong-Il;Ju, Mun-No;Yang, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1638-1643
    • /
    • 2010
  • HVDC is better economic method than HVAC in case of long distance transmission and it is possible to interconnect transmission lines regardless of difference of power frequency. The electrical environment problems of HVDC overhead transmission line are electric field, charged voltage, ion current and so on. For biopolar HVDC lines, most of the ions are directed toward the opposite polarity conductor, but a significant fraction is also directed toward the ground. These problems are major factor to design configuration of HVDC overhead transmission line. Therefore, It is necessary to test an environmental characteristics of HVDC overhead transmission line. In this paper, to assess the ion characteristic of HVDC transmission line, continuous measurements have been done on the biopolar single circuit line with ACSR 480mm2-6 bundle conductors of Gochang HVDC Test line. And then the ion characteristics were analyzed.