DOI QR코드

DOI QR Code

Recent Progress on Ionically Conductive Polymer Electrolyte for Electronic Skin Sensors

  • Received : 2021.08.01
  • Accepted : 2021.08.18
  • Published : 2021.09.30

Abstract

Electronic skin (or E-skin) is an artificial smart skin composed of one or more than two sensors. E-skins detect external stimuli and convert them into electrical signals. Various types of E-skin sensors exist, including mechanical, physical, and chemical, depending on the detection signals involved. For wearable E-skins with superior sensitivity and reliability, developing conductors that possess both good elasticity and sensitivity is essential. Typical electrical conductors used in these sensors show very high sensitivity, but they have drawbacks such as non-linearity, irreversibility, and a narrow sensing range. To address these issues, stretchable and lightweight ionic conductors have been actively used in E-skin applications. This study summarizes the recent progress on various types of ionic conductors and ionic-conductor-based E-skin sensors.

Keywords

References

  1. J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. N. Bao, and S. Park, "Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics", Adv. Mater., 31, 1904765 (2019). https://doi.org/10.1002/adma.201904765
  2. Z. L. Li, M. M. Zhu, J. L. Shen, Q. Qiu, J. Y. Yu, and B. Ding, "All-Fiber Structured Electronic Skin with High Elasticity and Breathability", Adv. Funct. Mater., 30, 1908411 (2020). https://doi.org/10.1002/adfm.201908411
  3. H. Y. Xu, Y. Y. Xie, E. W. Zhu, Y. Liu, Z. Q. Shi, C. X. Xiong, and Q. L. Yang, "Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films", J. Mater. Chem. A, 8, 6311 (2020). https://doi.org/10.1039/D0TA00158A
  4. S. Y. Zhang, S. B. Li, Z. Z. L. Xia, and K. Y. Cai, "A review of electronic skin: soft electronics and sensors for human health", J. Mat. Chem. B, 8, 852 (2020). https://doi.org/10.1039/C9TB02531F
  5. W. Asghar, F. L. Li, Y. L. Zhou, Y. Z. Wu, Z. Yu, S. B. Li, D. X. Tang, X. T. Han, J. Shang, Y. W. Liu, and R. W. Li, "Piezocapacitive Flexible E-Skin Pressure Sensors Having Magnetically Grown Microstructures", Adv. Mater. Technol., 5, 1900934 (2020). https://doi.org/10.1002/admt.201900934
  6. W. W. Peng, L. Han, H. L. Huang, X. Y. Xuan, G. D. Pan, L. J. Wan, T. Lu, M. Xu, and L. K. Pan, "A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor", J. Mater. Chem. A, 8, 26109 (2020). https://doi.org/10.1039/D0TA08987G
  7. S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Z. Guo, and W. L. Cheng, "Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors", Adv. Electron. Mater., 1, 1400063 (2015). https://doi.org/10.1002/aelm.201400063
  8. Y. M. Kim and H. C. Moon, "Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics", Adv. Funct. Mater., 30, 1907290 (2020). https://doi.org/10.1002/adfm.201907290
  9. M. L. Jin, S. Park, H. Kweon, H. J. Koh, M. Gao, C. Tang, S. Y. Cho, Y. Kim, S. Y. Zhang, X. L. Li, K. Shin, A. P. Fu, H. T. Jung, C. W. Ahn, and D. Kim, "Scalable Superior Chemical Sensing Performance of Stretchable Ionotronic Skin via a piHole Receptor Effect", Adv. Mater., 33, 10 (2021).
  10. J. Y. Sun, C. Keplinger, G. M. Whitesides, and Z. G. Suo, "Ionic Skin", Adv. Mater., 26, 7608 (2014). https://doi.org/10.1002/adma.201403441
  11. S. T. Lin, H. Yuk, T. Zhang, G. A. Parada, H. Koo, C. J. Yu, and X. H. Zhao, "Stretchable Hydrogel Electronics and Devices", Adv. Mater., 28, 4497 (2016). https://doi.org/10.1002/adma.201504152
  12. X. Y. Liu, H. Yuk, S. T. Lin, G. A. Parada, T. C. Tang, E. Tham, C. de la Fuente-Nunez, T. K. Lu, and X. H. Zhao, "3D Printing of Living Responsive Materials and Devices", Adv. Mater., 30, 1704821 (2018). https://doi.org/10.1002/adma.201704821
  13. Z. H. Tang, Y. Q. Li, P. Huang, H. Wang, N. Hu, and S. Y. Fu, "Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors", Compos. Sci. Technol., 208, 8 (2021).
  14. H. Tian, Y. Shu, Y. L. Cui, W. T. Mi, Y. Yang, D. Xie, and T. L. Ren, "Scalable fabrication of high-performance and flexible graphene strain sensors", Nanoscale, 6, 699 (2014). https://doi.org/10.1039/C3NR04521H
  15. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, "Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite", Acs Nano, 8, 5154 (2014). https://doi.org/10.1021/nn501204t
  16. L. Han, L. W. Yan, K. F. Wang, L. M. Fang, H. P. Zhang, Y. H. Tang, Y. H. Ding, L. T. Weng, J. L. Xu, J. Weng, Y. J. Liu, F. Z. Ren, and X. Lu, "Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality", NPG Asia Mater., 9, 12 (2017).
  17. L. Guan, S. Yan, X. Liu, X. Y. Li, and G. H. Gao, "Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion", J. Mat. Chem. B, 7, 5230 (2019). https://doi.org/10.1039/C9TB01340G
  18. J. J. Xu, G. Y. Wang, Y. F. Wu, X. Y. Ren, and G. H. Gao, "Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring", ACS Appl. Mater. Interfaces, 11, 25613 (2019). https://doi.org/10.1021/acsami.9b08369
  19. X. P. Morelle, W. R. Illeperuma, K. Tian, R. B. Bai, Z. G. Suo, and J. J. Vlassak, "Highly Stretchable and Tough Hydrogels below Water Freezing Temperature", Adv. Mater., 30, 1801541 (2018). https://doi.org/10.1002/adma.201801541
  20. J. M. Park, J. Park, Y. H. Kim, H. Zhou, Y. Lee, S. H. Jo, J. Ma, T. W. Lee, and J. Y. Sun, "Aromatic nonpolar organogels for efficient and stable perovskite green emitters", Nat. Commun., 11, 10 (2020). https://doi.org/10.1038/s41467-019-13807-w
  21. Y. Y. Lee, H. Y. Kang, S. H. Gwon, G. M. Choi, S. M. Lim, J. Y. Sun, and Y. C. Joo, "A Strain-Insensitive Stretchable Electronic Conductor: PEDOT:PSS/Acrylamide Organogels", Adv. Mater., 28, 1636 (2016). https://doi.org/10.1002/adma.201504606
  22. Z. Y. Han, P. Zhou, and C. Y. Duan, "Extremely stretchable, stable and antibacterial double network organogels based on hydrogen bonding interaction", Colloid Surf. A-Physicochem. Eng. Asp., 602, 8 (2020).
  23. G. L. Feng, Y. Xiong, H. Wang, and Y. J. Yang, "Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator", Electrochim. Acta, 53, 8253 (2008). https://doi.org/10.1016/j.electacta.2008.06.048
  24. H. X. Zhang, W. B. Niu, and S. F. Zhang, "Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels", ACS Appl. Mater. Interfaces, 10, 32640 (2018). https://doi.org/10.1021/acsami.8b08873
  25. S. F. Xiang, S. S. Chen, M. T. Yao, F. Zheng, and Q. H. Lu, "Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments", J. Mater. Chem. C, 7, 9625 (2019). https://doi.org/10.1039/C9TC02719J
  26. W. Y. Choi, Y. M. Kim, H. Ahn, and H. C. Moon, "Block versus random: effective molecular configuration of copolymer gelators to obtain high-performance gel electrolytes for functional electrochemical devices", J. Mater. Chem. C, 8, 17045 (2020). https://doi.org/10.1039/D0TC04521G
  27. R. Tamate, K. Hashimoto, T. Horii, M. Hirasawa, X. Li, M. Shibayama, and M. Watanabe, "Self-Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding", Adv. Mater., 30, 1802792 (2018). https://doi.org/10.1002/adma.201802792
  28. Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger, and C. Wang, "A Transparent, Self-Healing, Highly Stretchable Ionic Conductor", Adv. Mater., 29, 1605099 (2017). https://doi.org/10.1002/adma.201605099
  29. H. M. Yang, Y. K. Kwon, S. B. Lee, S. Kim, K. Hong, and K. H. Lee, "Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors", ACS Appl. Mater. Interfaces, 9, 8813 (2017). https://doi.org/10.1021/acsami.6b12283
  30. K. G. Cho, Y. K. Cho, J. H. Kim, H. Y. Yoo, K. Hong, and K. H. Lee, "Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors", ACS Appl. Mater. Interfaces, 12, 15464 (2020). https://doi.org/10.1021/acsami.9b23358
  31. Y. Lei and T. P. Lodge, "Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding", Soft Matter, 8, 2110 (2012). https://doi.org/10.1039/c2sm06652a
  32. J. H. Kim, K. G. Cho, D. H. Cho, K. Hong, and K. H. Lee, "Ultra-Sensitive and Stretchable Ionic Skins for High-Precision Motion Monitoring", Adv. Funct. Mater., 31, 2010199 (2021). https://doi.org/10.1002/adfm.202010199
  33. S. G. Yoon, B. J. Park, and S. T. Chang, "Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites", ACS Appl. Mater. Interfaces, 9, 36206 (2017). https://doi.org/10.1021/acsami.7b11700
  34. D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T. S. Kim, and I. Park, "Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer", ACS Appl. Mater. Interfaces, 8, 16922 (2016). https://doi.org/10.1021/acsami.6b04225
  35. B. J. Park, S. Oh, F. S. Kim, and S. T. Chang, "Pixel-free capacitive touch sensor using a single-layer ion gel", J. Mater. Chem. C, 7, 10264 (2019). https://doi.org/10.1039/c9tc02809a
  36. J. Wu, Z. X. Wu, S. J. Han, B. R. Yang, X. C. Gui, K. Tao, C. Liu, J. M. Miao, and L. K. Norford, "Extremely Deformable, Transparent, and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel", ACS Appl. Mater. Interfaces, 11, 2364 (2019). https://doi.org/10.1021/acsami.8b17437
  37. "Electronic Skin Market Size, Share & Trends Analysis Report By Product, By Component, By Sensors, By Application, By Region, and Segment Forecasts", Grand View Resaerch, (2020).
  38. K. Sanderson, "Electronic skin: from flexibility to a sense of touch", Nature 591, 685 (2021). https://doi.org/10.1038/d41586-021-00739-z
  39. Y. Lee, J. W. Chung, G. H. Lee, H. Kang, J.-Y. Kim, C. Bae, H. Yoo, S. Jeong, H. Cho, S.-G Kang, J. Y. Jung, D.-W. Lee, S. Gam, S. G. Hahm, Y. Kuzumoto, S. J. Kim, Z. Bao, Y. Hong, Y. Yun, and S. Kim, "Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system", Sci. Adv. 7, eabg9180 (2021). https://doi.org/10.1126/sciadv.abg9180
  40. "H. Yeon, H. Lee, Y. Kim, D. Lee, Y. Lee, J.-S. Lee, J. Shin, C. Choi, J.-H. Kang, J. M. Suh, H. Kim, H. S. Kum, J. Lee, D. Kim, K. Ko, B. S. Ma, P. Lin, S. Han, S. Kim, S.-H. Bae, T.- S. Kim, M.-C. Park, Y.-C. Joo, E. Kim, J. Han, and J. Kim, "Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins", Sci. Adv. 7, eabg8459 (2021). https://doi.org/10.1126/sciadv.abg8459
  41. "2021 혁신성장 공동기준 약식 매뉴얼", 혁신성장정책금융센터, (2021).