Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.3.117

Recent Progress on Ionically Conductive Polymer Electrolyte for Electronic Skin Sensors  

Kim, Jeong Hui (Department of Chemical Engineering, Inha University)
Jeong, Jung-Chae (Industrial Policy Planning Department)
Lee, Keun Hyung (Department of Chemical Engineering, Inha University)
Publication Information
Elastomers and Composites / v.56, no.3, 2021 , pp. 117-123 More about this Journal
Abstract
Electronic skin (or E-skin) is an artificial smart skin composed of one or more than two sensors. E-skins detect external stimuli and convert them into electrical signals. Various types of E-skin sensors exist, including mechanical, physical, and chemical, depending on the detection signals involved. For wearable E-skins with superior sensitivity and reliability, developing conductors that possess both good elasticity and sensitivity is essential. Typical electrical conductors used in these sensors show very high sensitivity, but they have drawbacks such as non-linearity, irreversibility, and a narrow sensing range. To address these issues, stretchable and lightweight ionic conductors have been actively used in E-skin applications. This study summarizes the recent progress on various types of ionic conductors and ionic-conductor-based E-skin sensors.
Keywords
Electronic skin; E-skin; ionic conductor; hydrogel; organogel; ion gel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. P. Morelle, W. R. Illeperuma, K. Tian, R. B. Bai, Z. G. Suo, and J. J. Vlassak, "Highly Stretchable and Tough Hydrogels below Water Freezing Temperature", Adv. Mater., 30, 1801541 (2018).   DOI
2 M. L. Jin, S. Park, H. Kweon, H. J. Koh, M. Gao, C. Tang, S. Y. Cho, Y. Kim, S. Y. Zhang, X. L. Li, K. Shin, A. P. Fu, H. T. Jung, C. W. Ahn, and D. Kim, "Scalable Superior Chemical Sensing Performance of Stretchable Ionotronic Skin via a piHole Receptor Effect", Adv. Mater., 33, 10 (2021).
3 Z. H. Tang, Y. Q. Li, P. Huang, H. Wang, N. Hu, and S. Y. Fu, "Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors", Compos. Sci. Technol., 208, 8 (2021).
4 L. Han, L. W. Yan, K. F. Wang, L. M. Fang, H. P. Zhang, Y. H. Tang, Y. H. Ding, L. T. Weng, J. L. Xu, J. Weng, Y. J. Liu, F. Z. Ren, and X. Lu, "Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality", NPG Asia Mater., 9, 12 (2017).
5 Y. Lee, J. W. Chung, G. H. Lee, H. Kang, J.-Y. Kim, C. Bae, H. Yoo, S. Jeong, H. Cho, S.-G Kang, J. Y. Jung, D.-W. Lee, S. Gam, S. G. Hahm, Y. Kuzumoto, S. J. Kim, Z. Bao, Y. Hong, Y. Yun, and S. Kim, "Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system", Sci. Adv. 7, eabg9180 (2021).   DOI
6 Y. Y. Lee, H. Y. Kang, S. H. Gwon, G. M. Choi, S. M. Lim, J. Y. Sun, and Y. C. Joo, "A Strain-Insensitive Stretchable Electronic Conductor: PEDOT:PSS/Acrylamide Organogels", Adv. Mater., 28, 1636 (2016).   DOI
7 J. Wu, Z. X. Wu, S. J. Han, B. R. Yang, X. C. Gui, K. Tao, C. Liu, J. M. Miao, and L. K. Norford, "Extremely Deformable, Transparent, and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel", ACS Appl. Mater. Interfaces, 11, 2364 (2019).   DOI
8 W. W. Peng, L. Han, H. L. Huang, X. Y. Xuan, G. D. Pan, L. J. Wan, T. Lu, M. Xu, and L. K. Pan, "A direction-aware and ultrafast self-healing dual network hydrogel for a flexible electronic skin strain sensor", J. Mater. Chem. A, 8, 26109 (2020).   DOI
9 J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. N. Bao, and S. Park, "Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics", Adv. Mater., 31, 1904765 (2019).   DOI
10 Z. L. Li, M. M. Zhu, J. L. Shen, Q. Qiu, J. Y. Yu, and B. Ding, "All-Fiber Structured Electronic Skin with High Elasticity and Breathability", Adv. Funct. Mater., 30, 1908411 (2020).   DOI
11 H. Y. Xu, Y. Y. Xie, E. W. Zhu, Y. Liu, Z. Q. Shi, C. X. Xiong, and Q. L. Yang, "Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films", J. Mater. Chem. A, 8, 6311 (2020).   DOI
12 S. Y. Zhang, S. B. Li, Z. Z. L. Xia, and K. Y. Cai, "A review of electronic skin: soft electronics and sensors for human health", J. Mat. Chem. B, 8, 852 (2020).   DOI
13 H. X. Zhang, W. B. Niu, and S. F. Zhang, "Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels", ACS Appl. Mater. Interfaces, 10, 32640 (2018).   DOI
14 W. Asghar, F. L. Li, Y. L. Zhou, Y. Z. Wu, Z. Yu, S. B. Li, D. X. Tang, X. T. Han, J. Shang, Y. W. Liu, and R. W. Li, "Piezocapacitive Flexible E-Skin Pressure Sensors Having Magnetically Grown Microstructures", Adv. Mater. Technol., 5, 1900934 (2020).   DOI
15 S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Z. Guo, and W. L. Cheng, "Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors", Adv. Electron. Mater., 1, 1400063 (2015).   DOI
16 Y. M. Kim and H. C. Moon, "Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics", Adv. Funct. Mater., 30, 1907290 (2020).   DOI
17 K. G. Cho, Y. K. Cho, J. H. Kim, H. Y. Yoo, K. Hong, and K. H. Lee, "Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors", ACS Appl. Mater. Interfaces, 12, 15464 (2020).   DOI
18 B. J. Park, S. Oh, F. S. Kim, and S. T. Chang, "Pixel-free capacitive touch sensor using a single-layer ion gel", J. Mater. Chem. C, 7, 10264 (2019).   DOI
19 W. Y. Choi, Y. M. Kim, H. Ahn, and H. C. Moon, "Block versus random: effective molecular configuration of copolymer gelators to obtain high-performance gel electrolytes for functional electrochemical devices", J. Mater. Chem. C, 8, 17045 (2020).   DOI
20 X. Y. Liu, H. Yuk, S. T. Lin, G. A. Parada, T. C. Tang, E. Tham, C. de la Fuente-Nunez, T. K. Lu, and X. H. Zhao, "3D Printing of Living Responsive Materials and Devices", Adv. Mater., 30, 1704821 (2018).   DOI
21 "H. Yeon, H. Lee, Y. Kim, D. Lee, Y. Lee, J.-S. Lee, J. Shin, C. Choi, J.-H. Kang, J. M. Suh, H. Kim, H. S. Kum, J. Lee, D. Kim, K. Ko, B. S. Ma, P. Lin, S. Han, S. Kim, S.-H. Bae, T.- S. Kim, M.-C. Park, Y.-C. Joo, E. Kim, J. Han, and J. Kim, "Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins", Sci. Adv. 7, eabg8459 (2021).   DOI
22 "2021 혁신성장 공동기준 약식 매뉴얼", 혁신성장정책금융센터, (2021).
23 K. Sanderson, "Electronic skin: from flexibility to a sense of touch", Nature 591, 685 (2021).   DOI
24 H. Tian, Y. Shu, Y. L. Cui, W. T. Mi, Y. Yang, D. Xie, and T. L. Ren, "Scalable fabrication of high-performance and flexible graphene strain sensors", Nanoscale, 6, 699 (2014).   DOI
25 M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, "Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite", Acs Nano, 8, 5154 (2014).   DOI
26 J. Y. Sun, C. Keplinger, G. M. Whitesides, and Z. G. Suo, "Ionic Skin", Adv. Mater., 26, 7608 (2014).   DOI
27 S. T. Lin, H. Yuk, T. Zhang, G. A. Parada, H. Koo, C. J. Yu, and X. H. Zhao, "Stretchable Hydrogel Electronics and Devices", Adv. Mater., 28, 4497 (2016).   DOI
28 J. J. Xu, G. Y. Wang, Y. F. Wu, X. Y. Ren, and G. H. Gao, "Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring", ACS Appl. Mater. Interfaces, 11, 25613 (2019).   DOI
29 G. L. Feng, Y. Xiong, H. Wang, and Y. J. Yang, "Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator", Electrochim. Acta, 53, 8253 (2008).   DOI
30 L. Guan, S. Yan, X. Liu, X. Y. Li, and G. H. Gao, "Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion", J. Mat. Chem. B, 7, 5230 (2019).   DOI
31 J. M. Park, J. Park, Y. H. Kim, H. Zhou, Y. Lee, S. H. Jo, J. Ma, T. W. Lee, and J. Y. Sun, "Aromatic nonpolar organogels for efficient and stable perovskite green emitters", Nat. Commun., 11, 10 (2020).   DOI
32 Z. Y. Han, P. Zhou, and C. Y. Duan, "Extremely stretchable, stable and antibacterial double network organogels based on hydrogen bonding interaction", Colloid Surf. A-Physicochem. Eng. Asp., 602, 8 (2020).
33 S. F. Xiang, S. S. Chen, M. T. Yao, F. Zheng, and Q. H. Lu, "Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments", J. Mater. Chem. C, 7, 9625 (2019).   DOI
34 R. Tamate, K. Hashimoto, T. Horii, M. Hirasawa, X. Li, M. Shibayama, and M. Watanabe, "Self-Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding", Adv. Mater., 30, 1802792 (2018).   DOI
35 Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger, and C. Wang, "A Transparent, Self-Healing, Highly Stretchable Ionic Conductor", Adv. Mater., 29, 1605099 (2017).   DOI
36 H. M. Yang, Y. K. Kwon, S. B. Lee, S. Kim, K. Hong, and K. H. Lee, "Physically Cross-Linked Homopolymer Ion Gels for High Performance Electrolyte-Gated Transistors", ACS Appl. Mater. Interfaces, 9, 8813 (2017).   DOI
37 D. Kwon, T. I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T. S. Kim, and I. Park, "Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer", ACS Appl. Mater. Interfaces, 8, 16922 (2016).   DOI
38 Y. Lei and T. P. Lodge, "Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding", Soft Matter, 8, 2110 (2012).   DOI
39 J. H. Kim, K. G. Cho, D. H. Cho, K. Hong, and K. H. Lee, "Ultra-Sensitive and Stretchable Ionic Skins for High-Precision Motion Monitoring", Adv. Funct. Mater., 31, 2010199 (2021).   DOI
40 S. G. Yoon, B. J. Park, and S. T. Chang, "Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites", ACS Appl. Mater. Interfaces, 9, 36206 (2017).   DOI
41 "Electronic Skin Market Size, Share & Trends Analysis Report By Product, By Component, By Sensors, By Application, By Region, and Segment Forecasts", Grand View Resaerch, (2020).