• Title/Summary/Keyword: Ion Conductivity

Search Result 835, Processing Time 0.025 seconds

Behaviors of Ionic Conductivity with Temperature for High-Temperature PEMFC Containing Room Temperature ionic Liquids Under Non-humidified Condition (상온 이온액을 이용한 고온 무수 PEMFC용 고정화 액막의 온도에 따른 이온전도도 거동)

  • Kim, Beom-Sik;Byun, Yong-Hoon;Park, You-In;Lee, Sang-Hak;Lee, Jung-Min;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.268-275
    • /
    • 2006
  • Novel SILEMs were prepared by multi-stage phase separation process combined by the low temperature phase separation (LTPS) and the high temperature phase separation (HTPS) using room temperature ionic liquids (RTILs) which have a high ionic conductivity. PVDF and imidazolium series ionic liquids were used as membrane material and electrolyte, respectively. To study the ion conducting properties, the SILEMs were tested using LCR meter at temperature controlled from 30 to $130^{\circ}C$. Under humid conditions, with increasing temperature from 30 to $100^{\circ}C$, the ion conductivity of the cast $Nafion^{(R)}$ membrane increased linearly, but then started to decrease after $100^{\circ}C$. However, in the case of the SILEMs, with increasing operating temperature, the ion conductivity increased. Also, the ion conductivity behaviors of the SILEMs were almost same, regardless of humidity. The ion conductivity of the SILEMs was $2.7{\times}10^{-3}S/cm$ and increased almost linearly up to $2.2{\times}10^{-2}S/cm$ with increasing temperature to $130^{\circ}C$. The effects of an inorganic filler on the physical properties of the SILEMs were studied using the $SiO_2$. The addition of $SiO_2$ could improve the mechanical strength of the SILEMs, though the ionic conductivity was decreased slightly.

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM (정전기력 현미경을 사용한 메조포러스 실리카/나피온 합성 이온교환막의 표면 전하 및 모폴로지 연구)

  • Kwon, Osung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1173-1182
    • /
    • 2018
  • Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.

Measurement of Partial Conductivity of 8YSZ by Hebb-Wagner Polarization Method

  • Lim, Dae-Kwang;Guk, Jae-Geun;Choi, Hyen-Seok;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.299-303
    • /
    • 2015
  • The electrolyte is an important component in determining the performance of Fuel Cells. Especially, investigation of the conduction properties of electrolytes plays a key role in determining the performance of the electrolyte. The electrochemical properties of Yttrium stabilized zirconia (YSZ) were measured to allow the use of this material as an electrolyte for solid oxide fuel cells (SOFC) in the temperature range of $700-1000^{\circ}C$ and in $0.21{\leq}pO_2/atm{\leq}10^{-23}$. A Hebb-Wagner polarization experimental cell was optimally manufactured; here we discuss typical problems associated with making cells. The partial conductivities due to electrons and holes for 8YSZ, which is known as a superior oxygen conductor, were obtained using I-V characteristics based on the Hebb-Wagner polarization method. Activation energies for holes and electrons are $3.99{\pm}0.17eV$ and $1.70{\pm}0.06eV$ respectively. Further, we calculated the oxygen ion conductivity with electron, hole, and total conductivity, which was obtained by DC four probe conductivity measurements. The oxygen ion conductivity was dependent on the temperature; the activation energy was $0.80{\pm}0.10eV$. The electrolyte domain was determined from the top limit, bottom limit, and boundary (p=n) of the oxygen partial pressure. As a result, the electrolyte domain was widely presented in an extensive range of oxygen partial pressures and temperatures.

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

Determination of trace bromate in various water samples by direct-injection ion chromatography and UV/Visible detection using post-column reaction with triiodide

  • Kim, Jungrae;Sul, Hyewon;Song, Jung-Min;Kim, Geon-Yoon;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Bromate is a disinfection by-product generated mainly from the oxidation of bromide during the ozonation and disinfection process in order to remove pathogenic microorganism of drinking water, and classified as a possible human carcinogen by International Agency for Research of Cancer (IARC) and World Health Organization (WHO). For the purpose of determining the trace level concentration of bromate, several sensitive techniques are applied mostly based on suppressed conductivity detection and UV/Visible detection after postcolumn reaction (PCR). In this study, the suppressed conductivity detection method and the PCR-UV/Visible detection method through the triiodide reaction were compared to analyze the trace bromate in water samples and estimated for the availability of these analytical methods. In addtion, the state-of-the-art techniques was applied for the determination of trace level bromate in various water matrices, i.e., soft drinking water, hard drinking water, mineral water, swimming pool water, and raw water. In comparison of two analytical methods, it was found that the conductivity detection had the suitable advantage to simultaneously analyze bromate and inorganic anions, however, the bromate might not be precisely quantified due to the matrix effect especially by chloride ion. On the other hand, the trace bromate was analyzed effectively by the method of PCR-UV/Visible detection through triiodide reaction to satisfactorily minimize the matrix interference of chloride ion in various water samples, showing the good linearity and reproducibility. Furthermore, the method detection limit (MDL) and recovery were 0.161 ㎍/L and 101.0-108.1 %, respectively, with a better availability compared to conductivity detection.

Preparation and Characterization of Ion-exchange Membrane Using sPEEK for Fuel Cell Application (Sulfonated-PEEK를 이용한 연료전지용 이온교환막의 제조 및 특성평가)

  • Jang, Won-Gi;Ye, Se-Hui;Kang, Seung-Kyu;Kim, Ji-Tae;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.270-276
    • /
    • 2011
  • A nascent membrane was prepared by using the solution evaporation method with a solution of sPEEK, EdAn (cross-linking reagent), and PEA (grafting reagent) in DMAc. Then, after the imination and sulfonation process the cross-linked and grafted ion-exchange membrane, CG-sPEEK, was obtained. The sulfonation and imination reactions were confirmed by FTIR analysis. In order to evaluate the possibility of prepared membrane for the use of an ion-exchange membrane in PEMFC, proton conductivity, water uptake and volume change were measured and compared with a commercial membrane, Nafion 115. It was revealed that since the proton conductivity (0.17 S/cm) of prepared membrane were much higher than those of Nafion 115 (0.10 S/cm) the prepared membrane could be used for the ion-exchange membrane in PEMFC. However, the high water uptake (130%) of CG-sPEEK should be reduced for the dimension stability.

Responses of Tobacco Photomixotrophic Cultured Cells to Various Herbicides (다양한 제초제에 대한 담배 Photomixotrophic 배양세포의 반응)

  • 권혜경;권석윤;이행순;윤의수;김진석;조광연;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.183-187
    • /
    • 1999
  • To establish an efficient screening system for new herbicides using plant cultured cells, responses of tobacco photomixotrophic cultured (PH) cells to various herbicides with different modes of action were surveyed by measuring the cell growth and ion conductivity in medium. The cells were cultured in Murashige and Skoog (MS) medium containing 0.7mg/L 2,4-D, 0.3mg/L kinetin and 30 g/L sucrose at $25^{\circ}C$ in the light (100 rpm). Chemicals were treated to suspension cultures of tobacco PH cells at the time of subculture. The cell growth and ion conductivity in the medium were investigated on 12 days after chemical treatment. The ion conductivity assay gave well correlated results to the cell growth inhibition data. The responses of tobacco PM cells were dependent on the modes of action of chemicals tested. Atrazine, an inhibitor of photosynthetic electron transport (PET), strongly inhibited both the cell membrane and cell growth ($IC_{50}$/, about 1 $\mu$M). Butachlor (an inhibitor of cell division), glufosinate (an inhibitor of amino acid biosynthesis), and fluridone (an inhibitor of carotenoid biosynthesis) showed a dose-dependent inhibition. However, Quinclorac, a herbicide with an auxin activity, did not affect the cell growth and ion leakage. These results suggested that tobacco PM cells is suitable materials for the simple screening of new herbicides such as PET, amino acid biosynthesis, ceil division inhibitors by measuring the cell growth and ion conductivity.

  • PDF

Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds (CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Yoon, Sang-Hyo;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • Silicon is a promising next-generation anode material for lithium-ion battery, and it has been studied for commercialization due to the high theoretical capacity. However, it has problems of the volume change during charge-discharge and the poor electrical conductivity. To solve these problems, formation of SiO2 and carbon coating on the surface of silicon crystal were performed to protect the side reaction and enhance the electrical conductivity of silicon. CNT and CNF were also added to mitigate the volume change and increase the conductivity. Physical properties of asprepared samples were analyzed by XRD, SEM, and EDS. Electrochemical characteristics were investigated by electrical conductivity measurement, EIS, CV and cycle performance test. (Si/SiO2/C)+CNT&CNF showed high electrical conductivity and low charge-transfer resistance, and the capacity was 1528 mAh/g at 1st cycle and 1055 mAh/g at 50th cycle with 83% capacity retention.