Preparation and Characterization of Ion-exchange Membrane Using sPEEK for Fuel Cell Application

Sulfonated-PEEK를 이용한 연료전지용 이온교환막의 제조 및 특성평가

  • Jang, Won-Gi (Department of Chemical System Engineering, Keimyung University) ;
  • Ye, Se-Hui (Department of Chemical System Engineering, Keimyung University) ;
  • Kang, Seung-Kyu (Department of Transportation Engineering, Keimyung University) ;
  • Kim, Ji-Tae (Department of Environmental and Energy Systems Engineering, Kyonggi University) ;
  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • 장원기 (계명대학교 화학시스템공학과) ;
  • 예세희 (계명대학교 화학시스템공학과) ;
  • 강승규 (계명대학교 교통공학과) ;
  • 김지태 (경기대학교 환경에너지시스템공학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2011.09.06
  • Accepted : 2011.09.26
  • Published : 2011.09.30

Abstract

A nascent membrane was prepared by using the solution evaporation method with a solution of sPEEK, EdAn (cross-linking reagent), and PEA (grafting reagent) in DMAc. Then, after the imination and sulfonation process the cross-linked and grafted ion-exchange membrane, CG-sPEEK, was obtained. The sulfonation and imination reactions were confirmed by FTIR analysis. In order to evaluate the possibility of prepared membrane for the use of an ion-exchange membrane in PEMFC, proton conductivity, water uptake and volume change were measured and compared with a commercial membrane, Nafion 115. It was revealed that since the proton conductivity (0.17 S/cm) of prepared membrane were much higher than those of Nafion 115 (0.10 S/cm) the prepared membrane could be used for the ion-exchange membrane in PEMFC. However, the high water uptake (130%) of CG-sPEEK should be reduced for the dimension stability.

기질 고분자인 sulfonated PEEK (sPEEK)와 가교제(cross-linking reagent) 4,4'-ethyldianiline (EdAn), 그래프트제(grafting reagent) 2-phenylethylamine (PEA)을 용매 dimethylacetamide (DMAc)에 녹여 용매증발법을 이용하여 제막하였다. 이민화 반응(imination)과 술폰화(sulfonation) 과정을 거쳐 최종 이온교환막인 cross-linked and grafted sPEEK (CG-sPEEK)막을 제조하였다. FT-IR 분석을 통해 술폰화 및 이민화 반응여부를 확인할 수 있었다. Proton conductivity와 water uptake, volume change를 측정하여 상용화된 Nafion115와 비교함으로써 이온교환막으로서의 활용가능성을 평가하였다. 제조된 CG-sPEEK막의 proton conductivity (0.17 S/cm) 값이 Nafion115 (0.10 S/cm) 보다 우수하게 나타나 이온교환막으로서의 적용가능성을 보여주었다. 다만 높은 water uptake (130%)는 CG-sPEEK의 치수안정성을 위해서 저감시킬 필요가 있다.

Keywords

References

  1. K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renewable Energy, 31, 719 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  2. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications", J. Membr. Sci., 173, 17 (2000). https://doi.org/10.1016/S0376-7388(00)00345-8
  3. R. K. Ahluwalia, X. Wang, A. Rousseau, and R. Kumar, "Fuel economy of hydrogen fuel cell vehicles", J. Power Sources, 130, 192 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.061
  4. S. H. Jeon, B. J. Chang, H. C. Kang, J. H. Kim, and H. J. Joo, "Effect of brandching- agent content on the electrochemical properties of partially fluorinated poly(arylene ether sulfone) block ionomer membranes", Membrane Journal, 21, 1 (2011).
  5. P. Costamagna and S. Srinivasan, "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects", J. Power Sources, 102, 242 (2002).
  6. P. Staiti, F. Lufrano, F. Lufrano, A. S. Aricò, E. Passalacqua, and V. Antonucci, "Sulfonated polybenzimidazole membranes - preparation and physic chemical characterization", J. Membr. Sci., 188, 71 (2001). https://doi.org/10.1016/S0376-7388(01)00359-3
  7. M. Rikukawa and K. Sanui, "Proton- conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  8. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approcaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100${^{\circ}C}$", Chem. Mater, 15, 4896 (2003). https://doi.org/10.1021/cm0310519
  9. K. Lunkwitz, U. Lappan, and U. Scheler, "Modification of perfluorinated polymers by high- energy irradiation", J. Fluor. Chem., 125, 863 (2004). https://doi.org/10.1016/j.jfluchem.2004.01.020
  10. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochimia Acta, 46, 2401 (2001). https://doi.org/10.1016/S0013-4686(01)00437-6
  11. A. H. C. Sirk, J. M. Hill, S. K. Y. Kung, and V. I. Birss, "Effect of Redox State of PtRu Electrocatalysts on Methanol Oxidation Activity", J. Phys. Chem. B., 108, 689 (2004). https://doi.org/10.1021/jp036602x
  12. S. Haufe and U. Stimming, "Proton conducting membranes based on electrolyte filled microporous matrices", J. Membr. Sci., 185, 95 (2001). https://doi.org/10.1016/S0376-7388(00)00637-2
  13. K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. S. Byun, "Fabrication and Characteristics of Partially Covalent- crosslinked Poly(arylene ether sulfone)s for Use in a Fuel Cell", Membrane Journal, 18, 261 (2008).
  14. H. Dogan, T. T. Inan, E. Unveren, and M. Kaya, "Effect of cesium salt of tungstophosphoric acid (Cs- TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications", International Journal of Hydrogen Energy. 25, 7784 (2010).
  15. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyeher sulfone membrane for PEMFC", Membrane Journal, 20, 40 (2010).
  16. N. Kim, "Preparation and Characteristics of Polyethersulfone Microfiltration Membrane", Membrane Journal, 17, 329 (2007).
  17. D. H. Lee, R. H. Crabtree, and S. K. Park, "Imination catalysis via two- point binding of substrate aldehyde via a metal and a pendant hydrogen- bonding group", Korean Chem. Soc., 23, 1157 (2002). https://doi.org/10.5012/bkcs.2002.23.8.1157