• 제목/요약/키워드: Ion Conductivity

검색결과 835건 처리시간 0.03초

음이온 교환막의 정확한 OH-전도도 및 CO2 피독 효과 분석을 위한 전기화학적 측정법 (Electrochemical Method for Measurement of Hydroxide Ion Conductivity and CO2 Poisoning Behavior of Anion Exchange Membrane)

  • 김수연;권후근;이혜진;정남기;배병찬;신동원
    • 전기화학회지
    • /
    • 제25권2호
    • /
    • pp.88-94
    • /
    • 2022
  • 알칼리막 연료전지에 사용되는 음이온 교환막은 OH-을 전달하는 역할을 하며 연료전지의 성능에 많은 영향을 미친다. 따라서 음이온 교환막의 정확한 OH- 전도도를 측정하는 것은 매우 중요하다. 그러나 OH-은 대기 중의 CO2에 의해 중탄산염 형태로 쉽게 피독되어 전해질막의 정확한 OH- 전도도를 측정하는 것은 매우 어렵다. 본 연구에서는 음이온 교환막의 정확한 OH- 전도도를 측정하기 위하여 전기화학적 이온교환 처리법을 검증하였다. 또한 CO2에 노출된 전해질막의 거동을 OH- 전도도 변화를 통하여 확인하였다. 상용 음이온 교환 막인 Fumatech사의 FAA-3-50과 Orion Polymer사의 Orion TM1와 함께 본 연구 그룹에서 개발한 QPP-6F를 사용하여 정확한 OH- 전도도 측정 및 CO2 피독 효과에 대해서 분석하였다.

제주도에서의 빗물 이온 농도 분석 (Analysis of Rainwater Samples in Cheju)

  • 심상규;강창희;김용표
    • 한국대기환경학회지
    • /
    • 제10권2호
    • /
    • pp.98-104
    • /
    • 1994
  • Precipitation samples were collected at Kosan, Cheju Island over a period of 6 months An automatic rain sampler was manufactured domestically and installed at Kosan station. All samples were collected on a weekly basis. Samples were analyzed for S $O_4$$^{=}$, N $O_3$$^{[-10]}$ , C $l^{[-10]}$ , N $H_4$$^{+}$, N $a^{+}$, $K^{+}$, $Ca^{++}$, $Mg^{++}$, and pH and specific conductivity. The quality analysis of rain sample data were performed based on ion balance and specific conductivity. The pH of rain samples ranged between 4.6 to 6.6. Bicarbonate ion concentration were included in ion balance and specific conductivity calculations. The sum of cation concentrations were slightly greater than the sum of anion concentrations. Calculated specific conductivity was greater than measured specific conductivity. The most probable explanations for this discrepancy is "an anion too low or anion missing." Two criteria were used to identify outliners. They are 1) the difference between the sum of anion concentrations and cation concentration is more than 50 $\mu$eq./1 and 2) the difference between calculated and measured specific conductivity is more than 25%. Chemical analysis from several samples did not satisfy these quality control criteria. Volume weighted average concentrations were calculated. Dominant free acids in rain samples were N $a^{+}$, C $l^{[-10]}$ , S $O_4$$^{=}$, N $O_3$$^{[-10]}$ ions in order of abundance. Non-seasalt sulfate comprises 76% of total sulfate.sulfate.e.ate.e.

  • PDF

용융 LaCl3-KCl 2성분계 혼합염의 전기전도도 (Electric Conductivities of LaCl3-KCl Binary Melts)

  • 김기호
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.48-52
    • /
    • 2014
  • Electric conductivities of $LaCl_3$-KCl binary melts have been measured by the Kohlausch bridge method over the range from their liquidus temperatures to about 1280 K. The electric conductivity increased with the content of KCl for all over the composition range of binary melts. The composition dependence of the electric conductivity and molar conductivity for the binary melt showed a non-linear relation from the additivity line, and the deviation showed a maximum value at about 60 mol.% KCl. The deviation implies the existence of complex ion of $LaCl^{4-}$ in the melt. Activation energy for electric conductivity of the binary melts decreased monotonously with increasing content of KCl.

용융 LaC $l_3$-LiCl 2성분계 혼합염의 전도도 (Electric Conductivities of LaC $l_3$-LiCl Binary Melts)

  • 김기호
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.301-306
    • /
    • 2004
  • Electric Conductivities of $LaCl_3$-LiCl binary melts have been measured by the Kohlausch bridge method over the range of their liquidus temperatures to about 1200 K. The electric conductivity increases with the content of LiCl for all over the composition range of binary melts. Composition dependence of the electric conductivity and molar conductivity for the binary melt shows a non-linear relation from the additivity line, and the deviations displays a maximum value at about 60 mol % LiCl. This suggest the existence of the complex ion of$ LaCl_{4}^{-}$ in the melt. Activation energy for electric conductivity of the binary melts decrease monotonously with increasing content of LiCl.l.

전리층 전기전도도의 추정과 관련된 불확실성 (UNCERTAINTIES INVOLVED IN THE IONOSPHERIC CONDUCTIVITY ESTIMATION)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권4호
    • /
    • pp.243-254
    • /
    • 2002
  • Sondrestrom 비간섭 산란 레이더로부터 구한 전자밀도분포를 이용하여, 전리층의 전기전도도를 추정할때 야기되는 불확실성들을 검토하였다. 첫째, 실제로 관측된 전자밀도와 전자와 양이온의 온도차이 및 Debye length효과를 보정한 전자밀도를 사용했을 경우에 야기되는 전리층 전기전도도의 차이점을 비교하였다. 보정한 전자밀도로부터 추정된 전기전도도는 실측 전자밀도를 사용했을 때 보다 큰 값을 나타내었다. 둘째, 전기전도도 추정에 이용되는 전자-중성대기 및 양이 온-중성대기의 충돌빈도모델에 따른 차이점도 비교해 보았다. 약 110km 이하의 고도에서는 전기전도도가 충돌빈도모델에 크게 의존하지 않았지만, 약 110km 이상의 고도에서는 이용된 모델에 따라 전기전도도의 값이 달랐다. 셋째, 전자 및 양이온의 부정확한 온도측정이 전기전도도의 추정에 미치는 영향을 알아보았다. 전자 및 양이온의 온도측정에 약 10% 이내의 오차가 포함된 경우가 전기전도도의 계산에는 큰 영향을 미치지 않았다. 마지막으로, 고도 적분된 전기전도도의 추정시 적용되는 적분 구간에 대해서도 검토해 본 결과, Hall 및 Pedersen 전기전도도의 값이 각각 하부 및 상부 적분 고도의 선택에 매우 민감하다는 것이 밝혀졌다.

이온주입에 의한 진공성형 포장재의 전기전도 특성 (Electrical Conductivity Properties of the Vacuum Forming Packing Materials by Ion Implantation)

  • 이재형;이찬영;길재근
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.1055-1061
    • /
    • 2003
  • A study has been made of surface modification of various organic materials by ion implantation to increase the surface electrical properties. The substrate used were PP(polypropylene), PET(polyethylene teraphthalate), ECOP(ethylene copolyester), PS(polystyrene). N$_2$, Ar ion implantation was performed at energies of 40 and 50keV with fluences from 5${\times}$ 10$\^$15/ to 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$ with and without H$_2$O gas environment. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species, atmosphere of chamber and kind of polymer. In result, surface conductivity of polymers irradiated with atmosphere gas H$_2$O was 10 times more higher than normal vacuum atmosphere, but after 90 hours, surface conductivity returned to the without H$_2$O gas atmosphere condition caused by aging effect. After vacuum forming, surface resistance value was changed to over 10$\^$16/$\Omega$/$\square$, because creation of surface cracks.

고성능 아연-이온 전지의 고품질 집전체를 위한 그래핀 필름의 결함 제어 (Controlling Defects in Graphene Film for Enhanced-Quality Current Collector of Zinc-Ion Batteries with High Performance)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.159-163
    • /
    • 2023
  • Zinc-ion Batteries (ZIBs) are currently considered to be effective energy storage devices for wearable electronics because of their low cost and high safety. Indeed, ZIBs show high power density and safety compared with conventional lithium ion batteries (LIBs) and exhibit high energy density in comparison with supercapacitors (SCs). However, in spite of their advantages, further current collector development is needed to enhance the electrochemical performance of ZIBs. To design the optimized current collector for high performance ZIBs, a high quality graphene film is suggested here, with improved electrical conductivity by controlling the defects in the graphene film. The graphene film showed improved electrical conductivity and good electron transfer between the current collector and active material, which led to a high specific capacity of 346.3 mAh g-1 at a current density of 100 mA g-1, a high-rate performance with 116.3 mAh g-1 at a current density of 2,000 mA g-1, and good cycling stability (68.0 % after 100 cycles at a current density of 1,000 mA g-1). The improved electrochemical performance is firmly because of the defects-controlled graphene film, leading to improved electrical conductivity and thus more efficient electron transfer between the current collector and active material.

이온주입에 의한 PET(polyethylene teraphthalate)의 표면결합상태 변화와 표면전기전도도 특성 (Electrical Properties of PET(polyethylene teraphthalate) by Ion Implantation)

  • 이재형;길재근
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.382-386
    • /
    • 2004
  • A study has been made of surface modification of organic materials by ion implantation to increase the surface electrical properties. The substrate used were PET(polyethylene teraphtalate). N$^{+}$, Ar$^{+}$ implantation was peformed at energies of 40 keV and 50 keV with fluences from $5{\times}10^{15}$, $1{\times}10^{16}$,$7{\times}10^{16}$, $1{\times}10^{17}$/ ions/$cm^2$. UV/Vis, FT-IR and XPS spectroscopy measured for surface structure changes. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species and ion dose rate. Surface conductivity of PET increased $2{\times}10^{9}$/∼$2{\times}10^{10}$/$\Omega$/sq by ion implantation. Result of various spectroscopy analysis, the cause of increasing PET surface conductivity was expected to breaking C=O bonds. It was formation carbon network structure by promote cross-linking and create C-C, C=C bonds.

Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries

  • Shin, Ran-Hee;Son, Sam-Ick;Lee, Sung-Min;Han, Yoon Soo;Kim, Yong Do;Ryu, Sung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.712-718
    • /
    • 2016
  • In this study, we investigate the effect of the$Li_3BO_3$ additive on the densification and ionic conductivity of garnet-type $Li_7La_3Zr_2O_{12}$ solid electrolytes for all-solid-state lithium batteries. We analyze their densification behavior with the addition of $Li_3BO_3$ in the range of 2-10 wt.% by dilatometer measurements and isothermal sintering. Dilatometry analysis reveals that the sintering of $Li_7La_3Zr_2O_{12}-Li_3BO_3$ composites is characterized by two stages, resulting in two peaks, which show a significant dependence on the $Li_3BO_3$ additive content, in the shrinkage rate curves. Sintered density and total ion conductivity of the system increases with increasing $Li_3BO_3$ content. After sintering at $1100^{\circ}C$ for 8 h, the $Li_7La_3Zr_2O_{12}-8$ wt.% $Li_3BO_3$ composite shows a total ionic conductivity of $1.61{\times}10^{-5}Scm^{-1}$, while that of the pure $Li_7La_3Zr_2O_{12}$ is only $5.98{\times}10^{-6}Scm^{-1}$.