Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.6.712

Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries  

Shin, Ran-Hee (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Son, Sam-Ick (Central Research Institute, Hyundai Motors)
Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Han, Yoon Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Yong Do (Department of Materials Science & Engineering, Hanyang University)
Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
In this study, we investigate the effect of the$Li_3BO_3$ additive on the densification and ionic conductivity of garnet-type $Li_7La_3Zr_2O_{12}$ solid electrolytes for all-solid-state lithium batteries. We analyze their densification behavior with the addition of $Li_3BO_3$ in the range of 2-10 wt.% by dilatometer measurements and isothermal sintering. Dilatometry analysis reveals that the sintering of $Li_7La_3Zr_2O_{12}-Li_3BO_3$ composites is characterized by two stages, resulting in two peaks, which show a significant dependence on the $Li_3BO_3$ additive content, in the shrinkage rate curves. Sintered density and total ion conductivity of the system increases with increasing $Li_3BO_3$ content. After sintering at $1100^{\circ}C$ for 8 h, the $Li_7La_3Zr_2O_{12}-8$ wt.% $Li_3BO_3$ composite shows a total ionic conductivity of $1.61{\times}10^{-5}Scm^{-1}$, while that of the pure $Li_7La_3Zr_2O_{12}$ is only $5.98{\times}10^{-6}Scm^{-1}$.
Keywords
Li ion battery; Solid electrolyte; Sintering; Sintering additive; Ion conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. W. Fergus, "Ceramic and Polymeric Solid Electrolytes for Lithium-ion Batteries," J. Power Sources, 195 [15] 4554-69 (2010).   DOI
2 Y. Inaguma, L.Q. Chen, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, "High Ionic Conductivity in Lithium Lanthanum Titanate," Solid State Commun., 86 [10] 689-93 (1993).   DOI
3 Y. Inaguma, L. Q. Chen, M. Itoh, and T. Nakamura, "Candidate Compounds with Perovskite Structure for High Lithium Ionic Conductivity," Solid State Ionics, 70 196-202 (1994).
4 G. Y. Adachi, N. Imanaka, and H. Aono, "Fast Li-circle Plus Conducting Ceramic Electrolytes," Adv. Mater., 8 [2] 127-35 (1996).   DOI
5 H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Y. Adachi, "Ionic Conductivity of the Lithium Titanium Phosphate($Li1+xMXTi_2-x(PO_4)_3$,M=Al, Sc, Y, and La) Systems," J. Electrochem. Soc., 136 [2] 590-91 (1989).   DOI
6 K. Arbi, J. M. Rojo, and J. Sanz, "Lithium Mobility in Titanium based NASICON $Li1+xTi_2-xAlx(PO_4)_3$ and $LiTi_2-xZrx(PO_4)_3$ Materials Followed by NMR and Impedance Spectroscopy," J. Eur. Ceram. Soc., 27 [13] 4215-18 (2007).   DOI
7 H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, "Electrical Property and Sinterability of $LiTi_2(PO4)_3$ Mixed with Lithium Salt ($Li_3PO_4$ or $Li_3BO_3$)," Solid State Ionics, 47 [3-4] 257-64 (1991) .   DOI
8 R. Kanno, T. Hata, Y. Kawamoto, and M. Irie, "Synthesis of a New Lithium Ionic Conductor, Thio-LISICON-lithium Germanium Sulfide System," Solid State Ionics, 130 [1-2] 97-104 (2000).   DOI
9 P. Knauth, "Inorganic Solid Li Ion Conductors: An Overview," Solid State Ionics, 180 [14-16] 911-16 (2009).   DOI
10 M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama, and Y. Kawamoto, "Synthesis of a New Lithium Ionic Conductor, Thio-LISICON-lithium Silicon Sulfide System," J. Solid State Chem., 168 [1] 140-48 (2002).   DOI
11 V. Thangadurai, H. Kaack, and W. J. F. Weppner, "Novel Fast Lithium Ion Conduction in Garnet-type $Li_5La_3M_2O_{12}$ (M=NB, Ta)," J. Am. Ceram. Soc., 86 [3] 437-40 (2003).   DOI
12 V. Thangadurai, and W. J. F. Weppner, "$Li_6ALa_2Ta_2O_{12}$ (A = Sr, Ba): Novel Garnet-like Oxides for Fast Lithium Ion Conduction," Adv. Funct. Mater., 15 [1] 107-12 (2005).   DOI
13 M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin, and W. Nan, "Effect of Sintering Temperature on Structure and Ionic Conductivity of $Li_7-xLa_3Zr_2O_{12}−0.5x$ (x = 0.5 - 0.7) Ceramics," Solid State Ionics, 204 [1] 41-5 (2011).
14 R. Murugan, W. Weppner, P. Schmid-Beurmann, and V. Thangadurai, "Structure and Lithium Ion Conductivity of Garnet-like $Li_5La_3Sb_2O_{12}$ and $Li_6SrLa_2Sb_2O_{12}$," Mater. Res. Bull., 43 [10] 2579-91 (2008).   DOI
15 R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-type $Li_7La_3Zr_2O_{12}$," Angew. Chem. Int. Ed., 46 [41] 7778-81 (2007).   DOI
16 E. J. Cussen, "The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+ Conductors," Chem. Commun., 37 [4] 412-13 (2006).
17 Y.-H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe, and J. Sakamoto, "Mechanical Properties of the Solid Electrolyte: $Li_{0.33}La_{0.57}TiO_3$," J. Mater. Sci., 47 [16] 5970-77 (2012).   DOI
18 K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi, and M. Tatsumisago, "Low Temperature Synthesis of Highly Ion Conductive $Li_7La_3Zr_2O_{12}- Li_3BO_3$ Composites," Electrochem. Commun., 33 51-4 (2013).   DOI
19 S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, "All-solid-state Lithium Ion Battery Using Garnet-type Oxide and $Li_3BO_3$ Solid Electrolytes Fabricated by Screen-printing," J. Power Sources, 238 53-6 (2013).   DOI
20 R. Takano, K. Tadanaga, A. Hayashi, and M. Tatsumisago, "Low Temperature Synthesis of Al-doped $Li_7La_3Zr_2O_{12}$ Solid Electrolyte by a Sol-gel Process," Solid State Ionics, 255 [1] 104-7 (2014).   DOI
21 N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, "Influence of Sintering Additives on Densification and Li+ Conductivity of Al doped $Li_7La_3Zr_2O_{12}$ Lithium Garnet," RSC Adv., 4 [93] 51228-38 (2014).   DOI
22 Y. Li, Y. Cao, and X. Guo, "Influence of Lithium Oxide Additives on Densification and Ionic Conductivity of Garnet-type $Li_{6.75}La_3Zr_{1.75}Ta_{0.25}O_{12}$ Solid Electrolytes," Solid State Ionics, 253 [1] 76-80 (2013).   DOI
23 N. C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, "Preparation of $Li_7La_3(Zr_2-x,\;Nbx)O_{12}$(x = 0-1.5) and $Li_3BO_3/LiBO_2$ Composites at Low Temperatures Using a Sol-gel Process," Solid State Ionics, 285 6-12 (2016).   DOI
24 R. H. Shin, S. I. Son, Y. S. Han, Y. D. Kim, H. T. Kim, S. S. Ryu, and W. Pan, "Sintering Behavior of Garnet-type $Li_7-La_3Zr_2O_{12}-Li_3BO_3$ Composite Solid Electrolytes for All-solidstate lithium Batteries," Solid State Ionics, submitted.
25 S. W. Baek, J. M. Lee, T. Y. Kim, M. S. Song, and Y. Park, "Garnet Related Lithium Ion Conductor Processed by Spark Plasma Sintering for All Solid State Batteries," J. Power Sources, 249 197-206 (2014).   DOI