• 제목/요약/키워드: IoU

검색결과 192건 처리시간 0.026초

딥러닝 설명을 위한 슈퍼픽셀 제외·포함 다중스케일 접근법 (Superpixel Exclusion-Inclusion Multiscale Approach for Explanations of Deep Learning)

  • 서다솜;오강한;오일석;유태웅
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2019
  • 딥러닝이 보편화되면서 예측 결과를 설명하는 연구가 중요해졌다. 최근 슈퍼픽셀에 기반한 다중스케일 결합 기법이 제안되었는데, 물체의 모양을 유지함으로써 시각적 공감이라는 장점을 제공한다. 이 기법은 예측 차이라는 원리에 기반을 두고 있으며, 슈퍼픽셀을 가리고 얻은 예측 결과와 원래 예측 결과의 차이를 보고 돌출맵을 구성한다. 본 논문은 슈퍼픽셀을 가리는 제외 연산뿐 아니라 슈퍼픽셀만 보여주는 포함 연산까지 사용하는 새로운 기법을 제안한다. 실험 결과 제안한 방법은 IoU에서 3.3%의 성능 향상을 보인다.

승용자율주행을 위한 의미론적 분할 데이터셋 유효성 검증 (Validation of Semantic Segmentation Dataset for Autonomous Driving)

  • 곽석우;나호용;김경수;송은지;정세영;이계원;정지현;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.104-109
    • /
    • 2022
  • For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • 한국인공지능학회지
    • /
    • 제11권3호
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

인공지능을 이용한 스마트 표적탐지 시스템 (Smart Target Detection System Using Artificial Intelligence)

  • 이성남
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.538-540
    • /
    • 2021
  • 본 논문에서는 드론의 표적탐지 임무 수행 시 상대운동 정보 제공을 위하여 지정된 표적을 탐지하고 인식하는 스마트 표적탐지 시스템을 제안하였다. 제안된 시스템은 적절한 정확도(i.e. mAP, IoU) 및 높은 실시간성을 동시에 확보할 수 있는 알고리즘을 개발하는데 중점을 두었다. 제안된 시스템은 Google Inception V2 딥러닝 모델의 100k 학습 후 test 결과가 1.0에 가까운 정확성을 보였고 실시간성도 Nvidia GTX 2070 Max-Q를 기반으로 한 고성능 노트북 활용 시에 추론 속도가 약 60-80[Hz]를 기록하였다. 제안된 스마트 표적탐지 시스템은 드론과 같이 운용되어 컴퓨터 영상처리를 활용하여 표적을 자동으로 인식하고 표적을 따라가면서 감시정찰 임무를 성공적으로 수행하는데 도움이 될 것이다.

  • PDF

Localization of ripe tomato bunch using deep neural networks and class activation mapping

  • Seung-Woo Kang;Soo-Hyun Cho;Dae-Hyun Lee;Kyung-Chul Kim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.357-364
    • /
    • 2023
  • In this study, we propose a ripe tomato bunch localization method based on convolutional neural networks, to be applied in robotic harvesting systems. Tomato images were obtained from a smart greenhouse at the Rural Development Administration (RDA). The sample images for training were extracted based on tomato maturity and resized to 128 × 128 pixels for use in the classification model. The model was constructed based on four-layer convolutional neural networks, and the classes were determined based on stage of maturity, using a Softmax classifier. The localization of the ripe tomato bunch region was indicated on a class activation map. The class activation map could show the approximate location of the tomato bunch but tends to present a local part or a large part of the ripe tomato bunch region, which could lead to poor performance. Therefore, we suggest a recursive method to improve the performance of the model. The classification results indicated that the accuracy, precision, recall, and F1-score were 0.98, 0.87, 0.98, and 0.92, respectively. The localization performance was 0.52, estimated by the Intersection over Union (IoU), and through input recursion, the IoU was improved by 13%. Based on the results, the proposed localization of the ripe tomato bunch area can be incorporated in robotic harvesting systems to establish the optimal harvesting paths.

실시간 관측 및 제어가 가능한 IoT 저수조 관리 시스템 (IoT-based Water Tank Management System for Real-time Monitoring and Controling)

  • 권민서;김우주;이재준;조오현
    • 융합정보논문지
    • /
    • 제8권6호
    • /
    • pp.217-223
    • /
    • 2018
  • 실시간 제어는 관리 시스템의 실질적인 사용을 확인하기 위해 해결해야 하는 주요 과제였다. 이와 관련하여 편의성과 효율성을 높이기 위해 처음으로 사물인터넷(IoT) 기반 저수조 시스템을 제안 및 개발하였다. 저수조의 상태가 불안정할 경우 사용자에게 알려 저수조를 효과적으로 제어할 수 있다. 제안된 시스템은 센서 데이터 측정 및 제어를 위한 내장형 H/W 장치, 웹 및 모바일 앱을 통한 관리 서버 구축을 위한 애플리케이션 S/W, 통계 관리 및 모니터링을 위한 효율적인 데이터베이스 구조로 구성되어 있다. 또한 기계 학습 알고리즘을 적용하여 실제 효율성을 더욱 향상시킬 수 있다.

A modified U-net for crack segmentation by Self-Attention-Self-Adaption neuron and random elastic deformation

  • Zhao, Jin;Hu, Fangqiao;Qiao, Weidong;Zhai, Weida;Xu, Yang;Bao, Yuequan;Li, Hui
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Despite recent breakthroughs in deep learning and computer vision fields, the pixel-wise identification of tiny objects in high-resolution images with complex disturbances remains challenging. This study proposes a modified U-net for tiny crack segmentation in real-world steel-box-girder bridges. The modified U-net adopts the common U-net framework and a novel Self-Attention-Self-Adaption (SASA) neuron as the fundamental computing element. The Self-Attention module applies softmax and gate operations to obtain the attention vector. It enables the neuron to focus on the most significant receptive fields when processing large-scale feature maps. The Self-Adaption module consists of a multiplayer perceptron subnet and achieves deeper feature extraction inside a single neuron. For data augmentation, a grid-based crack random elastic deformation (CRED) algorithm is designed to enrich the diversities and irregular shapes of distributed cracks. Grid-based uniform control nodes are first set on both input images and binary labels, random offsets are then employed on these control nodes, and bilinear interpolation is performed for the rest pixels. The proposed SASA neuron and CRED algorithm are simultaneously deployed to train the modified U-net. 200 raw images with a high resolution of 4928 × 3264 are collected, 160 for training and the rest 40 for the test. 512 × 512 patches are generated from the original images by a sliding window with an overlap of 256 as inputs. Results show that the average IoU between the recognized and ground-truth cracks reaches 0.409, which is 29.8% higher than the regular U-net. A five-fold cross-validation study is performed to verify that the proposed method is robust to different training and test images. Ablation experiments further demonstrate the effectiveness of the proposed SASA neuron and CRED algorithm. Promotions of the average IoU individually utilizing the SASA and CRED module add up to the final promotion of the full model, indicating that the SASA and CRED modules contribute to the different stages of model and data in the training process.

요추 특징점 추출을 위한 영역 분할 모델의 성능 비교 분석 (A Comparative Performance Analysis of Segmentation Models for Lumbar Key-points Extraction)

  • 유승희;최민호 ;장준수
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.354-361
    • /
    • 2023
  • Most of spinal diseases are diagnosed based on the subjective judgment of a specialist, so numerous studies have been conducted to find objectivity by automating the diagnosis process using deep learning. In this paper, we propose a method that combines segmentation and feature extraction, which are frequently used techniques for diagnosing spinal diseases. Four models, U-Net, U-Net++, DeepLabv3+, and M-Net were trained and compared using 1000 X-ray images, and key-points were derived using Douglas-Peucker algorithms. For evaluation, Dice Similarity Coefficient(DSC), Intersection over Union(IoU), precision, recall, and area under precision-recall curve evaluation metrics were used and U-Net++ showed the best performance in all metrics with an average DSC of 0.9724. For the average Euclidean distance between estimated key-points and ground truth, U-Net was the best, followed by U-Net++. However the difference in average distance was about 0.1 pixels, which is not significant. The results suggest that it is possible to extract key-points based on segmentation and that it can be used to accurately diagnose various spinal diseases, including spondylolisthesis, with consistent criteria.

IoT 환경에서의 효율적인 휴먼케어 시스템 (Efficient Human Care System in Internet of Things Environment)

  • 류창수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.890-891
    • /
    • 2015
  • 최근 한국은 고령화 사회에 접어들면서 독거노인의 사회적 관계들이 단절로 인한 위험이 높아지고 있으며, 이에 따른 사회적 관계 회복과 일상생활 능력을 보조할 수 있는 건강검진, 간병서비스, 가사서비스, 필요한 정보 제공을 위한 콘텐츠 구성 등의 대안 마련이 필요로 하고 있다. 본 논문에서는 고령자 및 돌봄이 필요한 휴먼케어 시스템으로 건강상태 모니터링를 위한 IoT 환경에서의 스마트폰 애플리케이션으로 다양한 콘텐츠를 결합한 상황인식, 체감, 센서 모듈을 결합한 소형화, 휴대성이 가능한 휴먼케어 시스템을 제안한다.

  • PDF