• Title/Summary/Keyword: IoT based Management

Search Result 674, Processing Time 0.027 seconds

Development of IoT-Based Automatic Paddy Inlet for Efficient Water Management (효율적 물관리를 위한 IoT 기반 논 관개수로 자동 물꼬 개발)

  • Song, Soekho;Ahn, Chiyong;Song, Chulmin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This study aims to contribute to efficient paddy field water management by developing an IoT-based automatic paddy inlet that can consider water level changes according to variations in the supplied water quantity through irrigation channels. This IoT-based automatic paddy inlet not only ensures water level changes based on the supply of irrigation water but also secures irrigation efficiency. The effectiveness and efficiency of the developed IoT-based automatic paddy inlet were presented to contribute to efficient paddy field water management. As a result, the IoT-based automatic paddy inlet demonstrated the capability to maintain the optimal water level in the paddy field. Particularly, it exhibited up to 18.4% higher water resource usage efficiency compared to conventional paddy inlet, emphasizing the IoT-based automatic paddy inlet's advantage in terms of water resource usage.

A Study on the integrated management system for tourism complexes based on IoT technology (IoT 기술을 기반으로 한 관광단지 통합관리시스템에 관한 연구)

  • An, Tai-Gi
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The purpose of this study is to analyze the actual condition of tourism complex and to apply IoT-based integrated management system to tourism complex to improve the utilization and management of tourism complex. Tourists need various information to take the lead in tourism activities, and all of these necessary information is collected through various routes such as information of the Internet, travel agencies, newspapers, and surrounding experiences. Recently, information provision through the Internet has taken a large part due to the development of information technology, and systems that combine IoT technology are being constructed. This is because the popularization of IoT technology improves the diversity, accessibility and convenience of information and makes it convenient to use. The purpose of this study is to suggest the importance of tourism information service using IoT-based system and future research directions. The previous studies on IoT-based system construction were also reviewed considering the efficiency of IoT technology. In order to solve the problems of tourism complex, this study improved the IoT-based tourism complex operation system and conducted operation management. IoT-based management system is expected to be improved as a tourism complex platform and is expected to be improved by overall management cases and experiences.

Trends in standardization of IoT based electrical safety technology (사물인터넷 기반 전기안전 기술 및 표준화 동향)

  • An, Y.Y.;Kim, S.H.;Jeong, S.J.;Kang, H.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This paper describes an IoT-based electrical safety management system for managing the electrical power distribution systems in factories or buildings and for managing private electrical devices in apartment complex. The IoT-based electrical safety management system collects IoT data from the electrical facilities or devices to provide various electrical safety services. In some cases, it uses an IoT adaptor to collect data from legacy facilities. By monitoring and analyzing the IoT data, it is possible to provide protection from and prevent electrical hazards. In addition, an IoT-based electrical safety management system can benefit from using the IoT identification system and standardized data model of the electrical facilities and devices. An IoT identification system is used to increase manageability of large-scale electrical facilities which consists of numerous IoT devices. A standardized data model is used to support interoperability. This paper also explores some international and Korean standards related to IoT-based electrical safety management.

Design of Context Aware IoT Data Management System based on Ontology (온톨로지 기반 상황인지 IoT 데이터 관리 시스템 설계)

  • Choi, Kang-im;Choi, Young-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.331-332
    • /
    • 2016
  • In the IoT environment, The mass IoT data can be collected in a variety of IoT devices. Due to mass IoT data, the services for data processing and providing are needed that fit user requirements. So we propose the design of IoT data management system based on ontology using context information.

  • PDF

Permission Management System for Secure IoT Devices in Android-Based IoT Environment (안드로이드 기반 IoT 환경에서 안전한 IoT 디바이스를 위한 권한 관리 시스템)

  • Park, In Kyu;Kwak, Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • Android Things is an Android-based platform running in Google's IoT environment. Android smartphones require permissions from application users to use certain features, but in the case of Android Things, there is no display to send request notifications to users. Therefore Does not make a request to use the permissions and automatically accepts the permissions from the system. If the privilege is used indiscriminately, malicious behavior such as system failure or leakage of personal information can be performed by a function which is not related to the function originally. Therefore, By monitoring the privileges that a device uses in an Android-based IoT system, users can proactively respond to security threats that can arise through unauthorized use of the IoT system. This paper proposes a system that manages the rights currently being used by IoT devices in the Android Things based IoT environment, so that Android-based IoT devices can cope with irrelevant use of rights.

Design and Implementation of Data Processing Middleware and Management System for IoT based Services

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Sensor application systems for remote monitoring and control are required, such as the establishment of databases and IoT service servers, to process data being transmitted and received through radio communication modules, controllers and gateways. This paper designs and implements database server, IoT service server, data processing middleware and IoT management system for IoT based services based on the controllers, communication modules and gateway middleware platform developed. For this, we firstly define the specification of the data packet and control code for the information classification of the sensor application system, and also design and implement the database as a separate server for data protection and efficient management. In addition, we design and implement the IoT management system so that functions such as status information verification, control and modification of operating environment information of remote sensor application systems are carried out. The implemented system can lead to efficient operation and reduced management costs of sensor application systems through site status analysis, setting operational information, and remote control and management.

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

A Hybrid Blockchain-Based Approach for Secure and Efficient IoT Identity Management

  • Abdulaleem Ali Almazroi;Nouf Atiahallah Alghanmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.11-25
    • /
    • 2024
  • The proliferation of IoT devices has presented an unprecedented challenge in managing device identities securely and efficiently. In this paper, we introduce an innovative Hybrid Blockchain-Based Approach for IoT Identity Management that prioritizes both security and efficiency. Our hybrid solution, strategically combines the advantages of direct and indirect connections, yielding exceptional performance. This approach delivers reduced latency, optimized network utilization, and energy efficiency by leveraging local cluster interactions for routine tasks while resorting to indirect blockchain connections for critical processes. This paper presents a comprehensive solution to the complex challenges associated with IoT identity management. Our Hybrid Blockchain-Based Approach sets a new benchmark for secure and efficient identity management within IoT ecosystems, arising from the synergy between direct and indirect connections. This serves as a foundational framework for future endeavors, including optimization strategies, scalability enhancements, and the integration of advanced encryption methodologies. In conclusion, this paper underscores the importance of tailored strategies in shaping the future of IoT identity management through innovative blockchain integration.

Heterogeneous message conversion for remote buried utility management system IoT(Internet of Things) gateway (원격 매설 유틸리티 관리 시스템을 위한 이기종 간의 메시지 변환 IoT(Internet of Things) 게이트웨이)

  • Kim, InSung;Pak, JuGeon;Park, KeeHyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.25-32
    • /
    • 2018
  • Recently, the complexity of underground utilities has increased and it has became more difficult to identify and manage information about all underground utilities due to changes such as road extension or building relocation. As a result, number of accidents related to underground utilities caused by excavation works or disasters are in rise, and naturally damages as well are increasing due to the accidents. Therefore, there is a need for a management system capable of easily registering or retrieving information of underground utilities from a remote place. In our previous work, we have developed a utility labelling system based on NFC (Near Field Communication) tag and a utility management system based on IoT (Internet of Things). However, in general, there are diverse communication devices and protocols in IoT environment. Therefore, in this paper, we propose management system and IoT gateway that enables smooth communication even in different types of devices based on the previous our work.

A Design of Certificate Management Method for Secure Access Control in IoT-based Cloud Convergence Environment (IoT기반 클라우드 융합환경에서 안전한 접근제어를 위한 인증서 관리기법 설계)

  • Park, Jung-Oh
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.7-13
    • /
    • 2020
  • IoT which is the core IT of the 4th industrial revolution, is providing various services from users in the conversion with other industries. The IoT convergence technology is leading the communication paradigm of communication environment in accordance with the increase of convenience for users. However, it is urgently needed to establish the security measures for the rapidly-developing IoT convergence technology. As IoT is closely related to digital ethics and personal information protection, other industries should establish the measures for coping with threatening elements in accordance with the introduction of IoT. In case when security incidents occur, there could be diverse problems such as information leakage, damage to image, monetary loss, and casualty. Thus, this paper suggests a certificate management technique for safe control over access in IoT-based Cloud convergence environment. This thesis designed the device/user registration, message communication protocol, and device renewal/management technique. On top of performing the analysis on safety in accordance with attack technique and vulnerability, in the results of conducting the evaluation of efficiency compared to the existing PKI-based certificate management technique, it showed about 32% decreased value.