• 제목/요약/키워드: IoT Systems

Search Result 906, Processing Time 0.027 seconds

Preliminary study for development of safety accident prevention IoT(Internet of Things) Cone system through dangerous area setting in construction site (건설현장의 위험구역 설정을 통한 안전 사고 예방 IoT Cone 시스템 개발 기초 연구)

  • Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.76-77
    • /
    • 2018
  • Under industry 4.0, Internet of Things (IoT) is advancing a new breed of smart manufacturing environment. However IoT has not been widely applied in construction industry compared with manufacturing environment. IoT enables operational systems that deliver more accurate and useful information for managing construction accidents. IoT enables operational systems that deliver more accurate and useful information for managing construction accidents. In order to apply well IoT for construction safety management, as a preliminary study, this paper presents e safety accident prevention IoT Cone system through dangerous area setting in construction site.

  • PDF

Ontology Based-Security Issues for Internet of Thing (IoT): Ontology Development

  • Amir Mohamed Talib
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.168-176
    • /
    • 2023
  • The use of sensors and actuators as a form of controlling cyber-physical systems in resource networks has been integrated and referred to as the Internet of Things (IoT). However, the connectivity of many stand-alone IoT systems through the Internet introduces numerous security challenges as sensitive information is prone to be exposed to malicious users. In this paper, IoT based-security issues ontology is proposed to collect, examine, analyze, prepare, acquire and preserve evidence of IoT security issues challenges. Ontology development has consists three main steps, 1) domain, purpose and scope setting, 2) important terms acquisition, classes and class hierarchy conceptualization and 3) instances creation. Ontology congruent to this paper is method that will help to better understanding and defining terms of IoT based-security issue ontology. Our proposed IoT based-security issue ontology resulting from the protégé has a total of 44 classes and 43 subclasses.

A Review on Preserving Data Confidentiality in Blockchain-based IoT-Supply Chain Systems

  • Omimah Alsaedi;Omar Batarfi;Mohammed Dahab
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.110-116
    • /
    • 2023
  • Data confidentiality refers to the characteristic that information kept undisclosed or hidden from unauthorized parties. It considered a key security requirement in current supply chain management (SCM) systems. Currently, academia and industry tend to adopt blockchain and IoT technologies in order to develop efficient and secure SCM systems. However, providing confidential data sharing among these technologies is quite challenging due to the limitations associated with blockchain and IoT devices. This review paper illustrates the importance of preserving data confidentiality in SCM systems by highlighting the state of the art on confidentiality-preserving methodologies in the context of blockchain based IoT-SCM systems and the challenges associated with it.

Edge-Centric Metamorphic IoT Device Platform for Efficient On-Demand Hardware Replacement in Large-Scale IoT Applications (대규모 IoT 응용에 효과적인 주문형 하드웨어의 재구성을 위한 엣지 기반 변성적 IoT 디바이스 플랫폼)

  • Moon, Hyeongyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1688-1696
    • /
    • 2020
  • The paradigm of Internet-of-things(IoT) systems is changing from a cloud-based system to an edge-based system to solve delays caused by network congestion, server overload and security issues due to data transmission. However, edge-based IoT systems have fatal weaknesses such as lack of performance and flexibility due to various limitations. To improve performance, application-specific hardware can be implemented in the edge device, but performance cannot be improved except for specific applications due to a fixed function. This paper introduces a edge-centric metamorphic IoT(mIoT) platform that can use a variety of hardware through on-demand partial reconfiguration despite the limited hardware resources of the edge device, so we can increase the performance and flexibility of the edge device. According to the experimental results, the edge-centric mIoT platform that executes the reconfiguration algorithm at the edge was able to reduce the number of server accesses by up to 82.2% compared to previous studies in which the reconfiguration algorithm was executed on the server.

Cognitive Radio Anti-Jamming Scheme for Security Provisioning IoT Communications

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4177-4190
    • /
    • 2015
  • Current research on Internet of Things (IoT) has primarily addressed the means to enhancing smart resource allocation, automatic network operation, and secure service provisioning. In particular, providing satisfactory security service in IoT systems is indispensable to its mission critical applications. However, limited resources prevent full security coverage at all times. Therefore, these limited resources must be deployed intelligently by considering differences in priorities of targets that require security coverage. In this study, we have developed a new application of Cognitive Radio (CR) technology for IoT systems and provide an appropriate security solution that will enable IoT to be more affordable and applicable than it is currently. To resolve the security-related resource allocation problem, game theory is a suitable and effective tool. Based on the Blotto game model, we propose a new strategic power allocation scheme to ensure secure CR communications. A simulation shows that our proposed scheme can effectively respond to current system conditions and perform more effectively than other existing schemes in dynamically changeable IoT environments.

A Survey on Detecting Interactions among Different Devices/Apps in IoT (IoT 분야의 다양한 기기/앱 간 상호작용 검출에 관한 연구동향)

  • Yicheng Zhen;Yeonjoon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.101-103
    • /
    • 2023
  • With the recent advances in communication technology and Internet of Things (IoT) infrastructure, home automation systems have emerged as a new paradigm for providing users with convenient smart home services. The IoT ecosystem has merged digital systems with the physical world, dramatically changing the way people live and work. However, at the same time, security remains one of the most significant research issues in IoT, as the deployment and application of high-availability systems come with various security risks that cause serious threats to users. Among them, the security issues arising from the interaction among devices/applications should not be underestimated. Attackers can exploit interactions among devices/applications to hack into the user's home. In this paper, we present a survey of research on detecting various types of interactions among devices/applications in IoT.

Vulnerability analysis on the ARMv7 Thumb Architecture (ARMv7 Thumb Architecture 취약성 분석)

  • Kim, Si-Wan;Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1003-1008
    • /
    • 2017
  • The Internet of Things has attracted considerable research attention in recent years. In order for the new IoT technology to be widely used, the reliability and protection of information is required. IoT systems are very vulnerable to physical security due to their easy accessibility. Along with the development of SoC technology, many operating systems have been developed and many new operating systems have been introduced. In this paper, we describe the vulnerability analysis results for operating systems running on the ARMv7 Thumb Architecture hardware platform. For the recently introduced "Windows 10 IoT Core" operating system, I implemented the Zero-Day Attack by implanting the penetration code developed through the research into a specific IoT system. The virus detection test for the resulting penetration code was validated by referral to the "virustotal" site.

Design and Implementation of Data Processing Middleware and Management System for IoT based Services

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Sensor application systems for remote monitoring and control are required, such as the establishment of databases and IoT service servers, to process data being transmitted and received through radio communication modules, controllers and gateways. This paper designs and implements database server, IoT service server, data processing middleware and IoT management system for IoT based services based on the controllers, communication modules and gateway middleware platform developed. For this, we firstly define the specification of the data packet and control code for the information classification of the sensor application system, and also design and implement the database as a separate server for data protection and efficient management. In addition, we design and implement the IoT management system so that functions such as status information verification, control and modification of operating environment information of remote sensor application systems are carried out. The implemented system can lead to efficient operation and reduced management costs of sensor application systems through site status analysis, setting operational information, and remote control and management.

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

System Hardening and Security Monitoring for IoT Devices to Mitigate IoT Security Vulnerabilities and Threats

  • Choi, Seul-Ki;Yang, Chung-Huang;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.906-918
    • /
    • 2018
  • The advent of the Internet of Things (IoT) technology, which brings many benefits to our lives, has resulted in numerous IoT devices in many parts of our living environment. However, to adapt to the rapid changes in the IoT market, numerous IoT devices were widely deployed without implementing security by design at the time of development. As a result, malicious attackers have targeted IoT devices, and IoT devices lacking security features have been compromised by attackers, resulting in many security incidents. In particular, an attacker can take control of an IoT device, such as Mirai Botnet, that has insufficient security features. The IoT device can be used to paralyze numerous websites by performing a DDoS attack against a DNS service provider. Therefore, this study proposes a scheme to minimize security vulnerabilities and threats in IoT devices to improve the security of the IoT service environment.