• Title/Summary/Keyword: IoT Cloud

Search Result 400, Processing Time 0.025 seconds

A Study on the Technological Priorities of Manufacturing and Service Companies for Response to the 4th Industrial Revolution and Transformation into a Smart Company (4차 산업혁명 대응과 스마트 기업으로의 변화를 위한 제조 및 서비스 기업의 기술적용 우선순위에 대한 연구)

  • Park, Chan-Kwon;Seo, Yeong-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.83-101
    • /
    • 2021
  • This study is to investigate, using AHP, what technologies should be applied first to Korean SMEs in order to respond to the 4th industrial revolution and change to a smart enterprise. To this end, technologies related to the 4th industrial revolution and smart factory are synthesized, and the classification criteria of Dae-Hoon Kim et al. (2019) are applied, but additional opinions of experts are collected and related technologies are converted to artificial intelligence (AI), Big Data, and Cloud Computing. As a base technology, mobile, Internet of Things (IoT), block chain as hyper-connected technology, unmanned transportation (autonomous driving), robot, 3D printing, drone as a convergence technology, smart manufacturing and logistics, smart healthcare, smart transportation and smart finance were classified as smart industrial technologies. As a result of confirming the priorities for technical use by AHP analysis and calculating the total weight, manufacturing companies have a high ranking in mobile, artificial intelligence (AI), big data, and robots, while service companies are in big data and robots, artificial intelligence (AI), and smart healthcare are ranked high, and in all companies, it is in the order of big data, artificial intelligence (AI), robot, and mobile. Through this study, it was clearly identified which technologies should be applied first in order to respond to the 4th industrial revolution and change to a smart company.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

  • Sun, Guolin;Mareri, Bruce;Liu, Guisong;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4717-4737
    • /
    • 2017
  • Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.

A Design of Smart Sensor Framework for Smart Home System Bsed on Layered Architecture (계층 구조에 기반을 둔 스마트 홈 시스템를 위한 스마트 센서 프레임워크의 설계)

  • Chung, Won-Ho;Kim, Yu-Bin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.49-59
    • /
    • 2017
  • Smart sensing plays a key role in a variety of IoT applications, and its importance is growing more and more together with the development of artificial intelligence. Therefore the importance of smart sensors cannot be overemphasized. However, most studies related to smart sensors have been focusing on specific application purposes, for example, security, energy saving, monitoring, and there are not much effort on researches on how to efficiently configure various types of smart sensors to be needed in the future. In this paper, a component-based framework with hierarchical structure for efficient construction of smart sensor is proposed and its application to smart home is designed and implemented. The proposed method shows that various types of smart sensors to be appeared in the near future can be configured through the design and development of necessary components within the proposed software framework. In addition, since it has a layered architecture, the configuration of the smart sensor can be expanded by inserting the internal or external layers. In particular, it is possible to independently design the internal and external modules when designing an IoT application service through connection with the external device layer. A small-scale smart home system is designed and implemented using the proposed method, and a home cloud operating as an external layer, is further designed to accommodate and manage multiple smart homes. By developing and thus adding the components of each layer, it will be possible to efficiently extend the range of applications such as smart cars, smart buildings, smart factories an so on.

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

A Study on Smart Home Service System Design to Support Aging in Place (Aging in Place 지원을 위한 스마트 홈 서비스 시스템 설계에 관한 연구)

  • Sim, Sungho
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.249-254
    • /
    • 2019
  • According to the recent expansion of the network environment, the spread of smart devices is continuously increasing. With the spread of smart devices such as smart phones, smart pads and wearables, changes are taking place in smart technologies and IT convergence technologies. The development of smart technology is a key element of the 4th industrial technology. The Fourth Industrial Revolution expanded the new service-based industry by adding intelligence to residential, industrial and production environments using IT convergence and smart devices. Research on providing various services using smart technologies, such as smart home, smart factory, smart farm, and smart healthcare, is being conducted in variety. In particular, There is a sharp rise in smart homes due to the proliferation of IoT devices and the growth of sensor technology, control technology, applications, data management, and cloud services. Smart home services using smart technology provide residents with convenient, beneficial services and environments. Smart home service has complemented the existing home network service, but there still are flaws to be modified. In other words, the spread of smart devices, the development of service provider-oriented services, and the interlocking of services have limitations in providing services in consideration of user environment and user state. In order to solve this problem, this study proposes a smart home service system that considers the situation of the elderly.

Implementation of IoT-Based Irrigation Valve for Rice Cultivation (벼 재배용 사물인터넷 기반 물꼬 구현)

  • Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.93-98
    • /
    • 2023
  • In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Keyword Analysis of Data Technology Using Big Data Technique (빅데이터 기법을 활용한 Data Technology의 키워드 분석)

  • Park, Sung-Uk
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.2
    • /
    • pp.265-281
    • /
    • 2019
  • With the advent of the Internet-based economy, the dramatic changes in consumption patterns have been witnessed during the last decades. The seminal change has led by Data Technology, the integrated platform of mobile, online, offline and artificial intelligence, which remained unchallenged. In this paper, I use data analysis tool (TexTom) in order to articulate the definitfite notion of data technology from Internet sources. The data source is collected for last three years (November 2015 ~ November 2018) from Google and Naver. And I have derived several key keywords related to 'Data Technology'. As a result, it was found that the key keyword technologies of Big Data, O2O (Offline-to-Online), AI, IoT (Internet of things), and cloud computing are related to Data Technology. The results of this study can be used as useful information that can be referred to when the Data Technology age comes.

Application of 4th Industrial Revolution Technology to Records Management (제4차 산업혁명 기술의 기록관리 적용 방안)

  • An, Dae-jin;Yim, Jin-hee
    • The Korean Journal of Archival Studies
    • /
    • no.54
    • /
    • pp.211-248
    • /
    • 2017
  • This study examined ways to improve records management by using the new technology of the Fourth Industrial Revolution. To do this, we selected four technologies that have a huge impact on the production and management of records such as cloud, big data, artificial intelligence, and the Internet of Things. We tested these technologies and summarized their concepts, characteristics, and applications. The characteristics of the changed production records were analyzed by each technology. Because of new technology, the production of records has rapidly increased and the types of records have become diverse. With this, there is also a need for solutions to explain the quality of data and the context of production. To effectively introduce each technology into records management, a roadmap should be designed by classifying which technology should be applied immediately and which should be applied later depending on the maturity of the technology. To cope with changes in the characteristics of production records, a flexible data structure must be produced in a standardized format. Public authorities should also be able to procure Software as a Service (SaaS) products and use digital technology to improve the quality of public services.