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Abstract 
 

Today, smart grids, smart homes, smart water networks, and intelligent transportation, are 
infrastructure systems that connect our world more than we ever thought possible and are 
associated with a single concept, the Internet of Things (IoT). The number of devices 
connected to the IoT and hence the number of traffic flow increases continuously, as well as 
the emergence of new applications. Although cutting-edge hardware technology can be 
employed to achieve a fast implementation to handle this huge data streams, there will 
always be a limit on size of traffic supported by a given architecture. However, recent cloud-
based big data technologies fortunately offer an ideal environment to handle this issue. 
Moreover, the ever-increasing high volume of traffic created on demand presents great 
challenges for flow management. As a solution, flow aggregation decreases the number of 
flows needed to be processed by the network. The previous works in the literature prove that 
most of aggregation strategies designed for smart grids aim at optimizing system operation 
performance. They consider a common identifier to aggregate traffic on each device, having 
its independent static aggregation policy. In this paper, we propose a dynamic approach to 
aggregate flows based on traffic characteristics and device preferences. Our algorithm runs 
on a big data platform to provide an end-to-end network visibility of flows, which performs 
high-speed and high-volume computations to identify the clusters of similar flows and 
aggregate massive number of mice flows into a few meta-flows. Compared with existing 
solutions, our approach dynamically aggregates large number of such small flows into fewer 
flows, based on traffic characteristics and access node preferences. Using this approach, we 
alleviate the problem of processing a large amount of micro flows, and also significantly 
improve the accuracy of meeting the access node QoS demands. We conducted experiments, 
using a dataset of up to 100,000 flows, and studied the performance of our algorithm 
analytically. The experimental results are presented to show the promising effectiveness and 
scalability of our proposed approach. 
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1. Introduction 

In smart cities, the main objective of IoT is to have the ability to uniquely recognize, signify 
and access things anytime and anywhere in the Internet. The applications of interest range 
from systems supporting urban mobility and its safety such as smart parking, traffic 
congestion, intelligent transportation systems, monitoring or optimizing assets and critical 
infrastructures in cities for structural health, smart lighting and smart roads.  

With the increasing popularity of wireless sensor networks, the amount of sensory data is 
increasing at an explosive rate, which up to now exceeds a few petabytes annually. The 
major challenge for mobile networks is to provide the much needed throughput for the 
increased traffic demand. The ever increasing speeds and volumes of transmission in 4G and 
5G networks, present great challenges for traffic flow management. The first challenge is 
QoS for the required traffic networks needs to adapt and provide the capacity to handle this 
rapid growth of data efficiently. The second is that the traffic requires a lot of resources, both 
in bandwidth for flow transmission and the adaptability to determine the best method to 
transmit the traffic. 

5G networks must support a variety of very diverse use cases with different requirements 
for latency, throughput, and availability [1]. The dynamic network slicing concept offers a 
way to optimize 5G networks. The current “one-size-fits-all” approach to wireless networks 
for all use cases and services to every device everywhere is no longer viable. To meet the 
future performance expectations, individual network segments, Radio Access Network 
(RAN), transport, core network and edge cloud, which were formerly treated completely 
separately, must be re-evaluated. Their performance must be adapted and coordinated to 
deliver a specific flow, for a specific user, at specific time.   

With this in mind that the high amount of traffic from sensors and other IoT devices are 
generated, special consideration is given to ensure end to end QoS. But in high volumes, a 
lot of resources are consumed in signaling and processing the flows, thus increasing latency. 
Solutions need to be implemented in order to ensure efficiency of these small mice flows. 
Taking into account the versatile attributes of each network slice, traffic requires effective 
and efficient management. These scalability issues motivate us to use some way or form of 
traffic reduction in this case flow aggregation. Several aggregation methods have been 
proposed in [2] [3] in a static way, which is not sufficient enough to guarantee large amounts 
of IoT mice flows and elephant flows aggregations. Due to this intrinsic relevance, there are 
many works that propose dynamic and adaptive aggregation schemes [4]. Others propose big 
data solutions to improve performance of networks analysis [5]. We can put forward the idea 
of having a dynamic flow aggregation methodology that is using the parallel processing big 
data applications to manage large scale wireless network data as proposed in [6]. 

Our main goal of this work is to propose and evaluate a algorithm of dynamic flow 
aggregation under a MapReduce framework on a Hadoop platform. We propose a Parrallel 
KNN algorithm in this paper, which is called as ParkNNO, to handle a massive number of 
mice flows and elephant flows in a dynamic and proactive way, so as to ensure that traffic is 
sufficiently aggregated based on the device. In MapReduce module, flow analysis and large-
scale traffic data are taken as the input of Parrallel KNN classifier, which will generate the 
classification results. With the output of MapReduce module and the current data observed, 
we can achieve real-time aggregation results. The experimental results demonstrate that the 
proposed approach has a significant performance gain by speeding up the classification 
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process and reducing the storage requirements. More importantly, with reasonable execution 
time, the classification performance can be significantly improved by flow aggregation 
information.  

The rest of paper is organized as follows: In Section 2, we review the previous works in 
the field of traffic aggregation. Section 3 we define our proposed dynamic aggregation and 
give an overview of the algorithm implemented in MapReduce.Section 4 presents 
experimental results in term of performance evaluation, and we compare the dynamic and 
static aggregation algorithms by means of the latency and compare how it performs on a 
parallel nodes and make our conclusion in Section 5. 

2. Related Work 
Flow aggregation is vitally important for network management, accounting and performance. 
The idea of flow aggregation has been explored to address the scalability issue of OpenFlow 
(OF)-based SDN. Flow aggregation combines a set of individual flows with same forwarding 
and performance requirements into an aggregated flow, which can be processed as one flow 
for admission control as well as forwarding decisions. Flow aggregation can mitigate the 
processing load at the controller, reduce communication overhead between the controller and 
switches, and limit the sizes of flow tables at switches, enhancing the scalability of OF-based 
SDN. For example, DevoFlow framework is proposed in [7] to achieve scalable flow 
management and a MiceTrap mechanism is reported in [8] as a scalable traffic engineering 
scheme with aggregation of a large number of short-live flows.  

In the previous works [9], flow aggregation is performed at the device level, where each 
network device performs isolated aggregations based on resource availability and efficiency 
of the device. This might not be an efficient way of flow aggregation in the 5G scenario of 
massive terminals, where a lot of devices are interconnected. Some aggregation architectures 
only perform path based aggregation, which might introduce higher latency in terms of 
different QoS needs of various traffic generated by a single source[10]. In [11], they provide 
a more refined approach for aggregation with a classification algorithm that classifies traffic 
based on its qualities on an Openflow network and reduces network load significantly, but 
still we need a more robust and scalable methodology to handle aggregation for traffic 
generated by massive terminals, efficiently. 5G slicing networks introduces the concept of 
networking slicing [12] [13]. There are some proposed models which focus on classifying 
and measuring QoS requirement and data traffic of M2M applications. In one approach [14], 
a data aggregation method has been proposed that relies on aggregating data from several 
M2M devices at the Packet Data Convergence Protocol (PDCP) layer of the Relay Node 
(RN), using a data traffic slicing algorithm which enhances QoS by efficient utilization of 
the 5G radio resources for M2M and the principle idea of Priority Queue (PQ) approach. 

When analyzing a large volume of traffic data for detailed statistics for a long-period or on 
a large-scale network, it is not easy to handle Tera or Peta-byte traffic data with a single 
server. As distributed parallel processing schemes have been recently developed, they could 
be usefully applied to analyzing big traffic data, especially in 5G network [15]. Thus, in this 
paper, we use open source Hadoop based MapReduce software framework of the cloud 
computing platform for a large-scale network data processing. Previously MapReduce has 
been used for Internet traffic measurement and analysis of network traffic activities, 
analyzing large volumes of data from various network nodes [16] [17]. It has been proven as 
a reliable cloud computing platform to process traffic and weblog analysis. It has been 
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suggested as an efficient solution for processing the flow data collected from switches and 
performs near real-time computations, which in our case are vital for massive flow 
aggregation. 

3. The Proposed Approach 
Generally, Internet traffic measurement and analysis are executed on a high-performance 

central server. Popular tools such as tcpdump or Coralreef are usually run on a single host to 
capture and process packets at a specific monitoring point. Flowscan, is widely used to 
generate traffic statistics. However, when we anatomize traffic in a large-scale network, we 
are often confronted with hard challenges of handling a huge amount of traffic data for 
processing and management. For example, when ISPs monitor traffic in a nation-wide 
network consisting of hundreds or thousands of routers capable of exporting Cisco NetFlow 
data, it is not easy to compute traffic statistics from many large flow files in short time. In 
order to lessen the volume of continuously streaming flow data, packet sampling or flow 
aggregation techniques are used. Otherwise, after processing packet traces, we leave only the 
statistics information results.  

Different traffic aggregation strategies have been implemented in enterprise networks, and 
with the growth of network infrastructure, scalability for traffic aggregation also grows. In 
[2], a static aggregation strategy is proposed where a common identifier is used to aggregate 
common traffic across a single path. This method identifies the micro-flows as a single unit 
meta-flow throughout the network path. One downside of this method is that each device has 
its own QoS requirement. Aggregation using a single factor cannot guarantee effective QoS 
for all of the different devices handling traffic. We propose to aggregate traffic dynamically 
using a controller based aggregation within an overall network. For each network device, we 
guarantee QoS by trying to aggregate traffic flows based on a combination of various flow 
tuple characteristics, and considering the device QoS preferences. 

Here, we detail our proposed MapReduce-based nearest neighbor approach for massive 
flow aggregation using term frequency for traffic analysis. By capturing incoming traffic 
flow metadata, we analyze the flows to generate the aggregated flows. We aim to design and 
deploy a framework to detect, analyze and aggregate flows. We consider a 5G network with 
various devices with specific QoS requirements that need to be met. We consider the large 
amounts of traffic generated by the networks and all need end to end QoS requirements 
guaranteed. The major concern is to ensure network resources efficiency by managing a 
large number of flows in the network. Flow aggregation needs to carry out instantaneously as 
the traffic is going through the network and should be dynamic to the requirements of the 
network nodes handling the traffic. 

3.1 Network Architecture 
Our SDN architecture consists of a controller and a Hadoop platform connected on the 

control plane. The controller is connected to all the access nodes in the network and manages 
them through an open flow control protocol. The cloud of sensors with massive terminals 
generates the traffic within our network, and an IoT gateway manages traffic for each cloud. 
The BTS units are the radio interfaces connected to the IoT gateways. The V-SGW (Serving 
gateway) within the core network originates and terminates signals and data streams from the 
BTS. It is also be used as a central switch for inter-BTS connectivity. The edge of network, 
Internet Gateway Router, is to bind traffic IP addresses to destinations. Fig. 1 shows the 
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devices in a network topology that will benefit significantly from flow aggregation of data 
through the data plane (i) IoT Gateway, content based aggregation on traffic will help in 
mitigating the processing of high volume mice flows, with diverse protocols, connectivity 
models and energy profiles generated from the cloud of sensors.  (ii) Base Stations are the air 
interface channels that transmit traffic based on QoS slicing of traffic. The flow aggregation 
based on QoS will ensure differentiated services. (iii) The V-SGW transmits traffic through 
port allocation within the core network. The port based flow aggregation will ensure load 
balancing within the core network. (iv) The access router connected to the Internet will 
aggregate based on path or destination. The 4-level devices are all connected to a controller, 
which is able to monitor and control the device operations, and the controller is connected to 
the MapReduce platform for decision making. 

 

 
Fig. 1. The proposed big data architecture 

3.2 Protocol Design 
A system model for flow aggregation in OF-based SDN is illustrated in Fig. 2, and then 

we apply the model to determine the amount of network resources required by a new arrival 
flow to meet its aggregation requirement. The aggregation decision for the flow is made 
based on the determined policy requirement of each device. 

The network protocol is designed with the control plane and data plane to facilitate our 
methodology. Our approach will combine a big data analysis engine and an SDN controller 
to perform parallel flow analysis and aggregation. The generated result sets will be used to 
determine the flow tables on the devices in the network. We shall be using an improved 
classification algorithm that has been modified to work with parallel MapReduce 
methodology. Each Openflow device is equipped with a flow collector. The flow data are 
captured and saved into files associated with each flow-exporting device. Collecting details 
of each flow will be analyzed by MapReduce to generate outputs and determine decision on 
the data plane. The MapReduce engine will be taking into consideration two vital elements 
to ensure that our algorithm is efficient. (i) The traffic flow data tuples and (ii) The device 
characteristics, as our key parameters to allow dynamic aggregation. 

The MapReduce module is located at the controller with overall network (see section 3.3). 
All of the aggregated individual flows will be treated as one flow by the device on the 
forwarding path. The aggregated flow table will be implemented based on the group feature 
defined in OpenFlow specification [18]. Virtual tables and group tables can be used along 
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with flow tables to control packet forwarding in the devices. In our scenario, we consider a 
single flow analysis and aggregation, while there typically are multiple aggregated flows at 
each device. 

The flow collector sends new flow details to the MapReduce on the control plane, where it 
analyzes various flow details and generates a clustered output. The result is determined for 
flow aggregation. Individual policy of flow aggregation decision is made based on the 
current device preference and flow characteristics. If the flow is accepted, the flow manager 
on the controller will send flow table update information to the processing module in the 
switch, where bandwidth and buffer space will be allocated for forwarding packets of the 
newly accepted aggregated flows.  

 
 

Fig. 2. The proposed protocol design 
 

 Our protocol works as shown in Fig. 2, with six steps in more detailed procedure. (1) 
Each open flow device is enabled with a flow collector. The traffic flow details are captured 
by a flow collector and sent the flow metadata to the controller. The metadata information 
includes IP destination, content type, QoS level, and the device originating traffic, even 
packet-size. (2) A MapReduce agent at the controller will capture, sort and process the 
received metadata from the flow collector, which is ready to be exported to the MapReduce 
platform. (3) The sorted data is arranged and the MapReduce agent exports the converted 
data into MapReduce readable format on HDFS (Hadoop File System) to be processed in the 
analyzer. (4) MapReduce performs analysis, taking into account the device preference 
characteristic, to define what kind of policy it should action. If a device is an IoT gateway, 
the flow aggregation policy will be based on content prioritized aggregation to mitigate 
signaling burden on the air-interface. (5) Once the Analyzer has completed analysis and a 
new result set is generated composed of aggregated flow results and their specific device 
origin, they are sent to the MapReduce agent. The MapReduce Agent will send the 
aggregation result sets as a policy result for the flow manager to decide the actions on the 
flow tables. (6) The flow manager will use the result as flow table rules, which will be used 
to generate the flow table instructions. The instructions are sent to the relevant devices on the 
data plane through the open flow protocol. 
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Fig. 3 shows the decision framework connecting the control plane and data plane modules. 
There are two important modules: MapReduce module (MRM) and Online traffic 
aggregation module (OTAM). The MRM module takes analy 

sis of device preference and flow metadata as input to build our classifier. For the 
accurate traffic flow classification (see Section 3.3), it particularly focuses on fast finding the 
nearest neighbors of a traffic sample through speeding up the classification process and 
reducing the storage requirements on a distributed Hadoop platform. The OTAM module 
aims to generate the aggregation results in parrallel with the current traffic flow data and the 
classification results of our ParkNNO classifier obtained from the traffic flow data, and 
reduce the computational cost and memory consumption of big traffic flow data processing 
on a parallel MapReduce framework. 

 

 
Fig. 3. Traffic Aggregation Decision Framework 

3.3 The proposed algorithm on MapReduce 
Here, we describe the implementation of our classifier following a MapReduce procedure 

to improve the classification process and reduce the storage requirements for high volume 
traffic flow aggregation. To improve the efficiency and scalability, we modify the standard 
KNN classifier to run in a parallel Mapreduce environment and breakdown the algorithm to 
Mapreduce jobs. We call our modified KNN classifier as ParkNNO classifier. The multiple 
MapReduce jobs, split from KNN, are carried out in the Map, Combine, and Reduce phases 
by the corresponding functions, respectively. Fig. 4 illustrates the computation flowchart of 
KNN on MapReduce and its data flow of MapReduce with an example of 4-nearest 
neighbors. After the Map, Combine and Reduce tasks, we can utilize current traffic flow data 
based on the selected k nearest neighbors outputted from MapReduce jobs. To generate 
aggregated traffic policies, as described above, the Mapper, Combiner, and Reducer 
functions are designed to reduce computational costs and save memory for classification. 
The number of Mappers relies on input splits, whereas the number of Combiners and 
Reducers is equal to the group of keys, which is generated from the mapping process. 
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Fig. 4. Flowchart of Our Parallel KNN on MapReduce  

3.3.1 KNN classifier on MapReduce 
In our approach, we use a modified KNN although standard KNN is a widely applied as 

a non-parametric NN approach[19]. The k nearest neighbor-based approach has a superior 
classification performance with three significant advantages: (i) it doesn’t need a 
complicated training procedure, (ii) minimal or no risk over fitting of parameters, and (iii) it 
is ideally capable of processing a huge amount of classes [20]. It commonly makes 
classification decision on the basis of closest training samples in the feature space [21]. The 
classifier is presented on the MapReduce framework to enhance the accuracy, efficiency and 
scalability of traffic flow aggregation, by facilitating the discovery and integration of 
correlational information between traffic flows, into the classification process[22] [23]. 

According to KNN, we define 𝑥𝑥 as the data record and 𝑦𝑦 is the corresponding class label. 
The main objective of k-nearest neighbor classifier is to discover set of k objects in the 
training set that are similar to the objects in the test group. The KNN algorithm calculates the 
similarity between each testing sample te = (x’,y’) and all the training samples (x,y) ∈ Tr to 
determine its nearest-neighbor list, Trte. Where the state space Tr is defined as all the traffic 
attributes from all the flows combined from training samples of each flow component. Each 
flow component includes a set of n attributes. The testing sample is the initial flow data to be 
used to determine its nearest neighbor. Once the nearest-neighbor list is obtained, the testing 
sample is classified based on the majority class of its nearest neighbors by the Majority 
Voting approach (see Eq. (3)). In our scenario each flow with n attributes will be classified 
and filtered using our algorithm to calculate its nearest neighbor, which is calculated by 
observing which flows have more similar n attributes, once this list is generated it is then 
filtered using a majority voting approach to ensure flows with the highest number of 
similarities are classified together. The KNN uses the following search parameters; (i) it 
defines a state space, in our case a list of all the flows attributes. (ii) it measures the 
similarity distance between 𝑥𝑥 and each component of 𝑦𝑦 in terms of text documents, using a 
Euclidean distance, given by 

𝑑𝑑𝑖𝑖(𝑥𝑥,𝑦𝑦) =  �∑ �𝑥𝑥𝑗𝑗 −  𝑦𝑦𝑗𝑗𝑖𝑖�
2𝑛𝑛

𝑗𝑗=1      (1) 

where, 𝑥𝑥𝑗𝑗 is the value of the jth attributes in the current data vectors and 𝑦𝑦𝑗𝑗𝑖𝑖  is the value of the 
jth attributes of the ith components. 𝑑𝑑𝑖𝑖(𝑥𝑥,𝑦𝑦) is the distance between the current data and the ith 
components in the state space. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017                            4725 

In our MapReduce scenario, we find similarity given two flows, 𝑑𝑑𝑎𝑎 and 𝑑𝑑𝑏𝑏 represented 
by their term vectors 𝑡𝑡𝑎𝑎���⃗  and 𝑡𝑡𝑏𝑏���⃗  respectively. Using the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 value as term weights, 𝑤𝑤𝑡𝑡,𝑎𝑎 =
 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑑𝑑𝑎𝑎 , 𝑡𝑡), and 𝑤𝑤𝑡𝑡,𝑏𝑏 =  𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑑𝑑𝑏𝑏 , 𝑡𝑡) , substituting 𝑥𝑥𝑗𝑗 = 𝑤𝑤𝑡𝑡,𝑎𝑎  and 𝑦𝑦𝑗𝑗𝑖𝑖 = 𝑤𝑤𝑡𝑡,𝑏𝑏 , from the 
previous equation (1), we define the Euclidean distance of the two documents as 

𝐷𝐷𝐸𝐸  �𝑡𝑡𝑎𝑎,����⃗  𝑡𝑡𝑏𝑏���⃗ � =  �∑ �𝑤𝑤𝑡𝑡,𝑎𝑎 −  𝑤𝑤𝑡𝑡,𝑏𝑏�
2𝑚𝑚

𝑡𝑡=1 �
1/2

     (2) 

where, 𝐷𝐷𝐸𝐸  �𝑡𝑡𝑎𝑎,����⃗  𝑡𝑡𝑏𝑏���⃗ � is the distance between the current data and the ith flow components in 
the state space, 𝑤𝑤𝑡𝑡,𝑎𝑎 is the value of the jth attributes in the current data vectors and 𝑤𝑤𝑡𝑡,𝑏𝑏 is the 
value of the jth attributes of the ith flow components, and m is the number of attributes or 
terms that is set  𝑇𝑇 = {𝑡𝑡1, … . , 𝑡𝑡𝑚𝑚} . (iii) Each neighbor has the same influence on the 
classification by the Majority Voting approach, thus making the classifier sensitive to the 
choice of k. Because we will be having multiple aggregations of flows based on nearest 
neighbour we aim to make the aggregations more granular and reduce huge aggregation 
clusters. In order to reduce the impact of k, we implement the Distance Weighted Voting 
scheme in our classifier, and the class labels for aggregations can be determined by 

𝑦𝑦´ = arg𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝐼𝐼(𝑣𝑣 = 𝑣𝑣𝑦𝑦𝑦𝑦)𝑣𝑣          (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝑇𝑇𝑟𝑟𝑡𝑡𝑡𝑡                                   (3) 

where, 𝜔𝜔𝑖𝑖 =  1
𝑑𝑑(𝑥𝑥´,𝑥𝑥𝑖𝑖)2

 is the weight of each nearest neighbor 𝑥𝑥𝑖𝑖 according to its distance, 𝑣𝑣 is 
a class label, 𝑣𝑣𝑦𝑦𝑦𝑦 is the class. And I(.) is an indicator function the returns the value 1 if the 
argument is TRUE and 0 if the argument is FALSE. When k = 1, the classifier assigns a 
testing traffic flow into the class of its nearest training sample which in our case is a cluster of 
matching flows attributes.  

3.3.2 Mapper Function 
Algorithm 1 Mapper Function () 
 
Input: <key, value> 
key: the record id of traffic flows 
value: the value of the tuples 
Output: <key1, value1>  
key1: the record id of the testing samples, id  
value1: vector (the calculated distance, d, and the selected class, c) 
1: for j = 0 to m do // for each equipment sending flow data  id classification 
2:  for i = 0 to n do 
3:             //these are the traffic samples, i, and the extracted category labels from Flow tuples, FTr  
4:           FTr = GetFlowLabel (i); 
5:                      for all p ∈ Traffic flow samples do 
6:                          //each traffic sample, p from specific device category 
7:                       d = parkNNOFunction (p,i); 
8:                    // Eqs. 1 
9:                          Context.write(id, vector (d, FTr)); 
10:                    end for 
11:    end for  
12: end for 
13: return <id, <d, c>>; 

 
Fig. 5. Mapper Function 
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The Mapper function, (see Algorithm 1) receives each line of the flow sets as a different 
key-value pair, then goes through each traffic flow and computes the similarity (or distance) 
between each pair of incoming data points and existing data points, te = (x’,y’) and all the 
training samples (x,y) ∈ Tr and finally outputs the intermediate results, <id, <d, c>>;, which 
form the input to the Combiner function. That is, each produced pair is composed of the 
corresponding record id emitted as the key, and the calculated distance and the selected class, 
<d, c>, emitted as the value. 

3.3.3 Combiner Function 
The Combiner function, (see Algorithm 2) is implemented to reduce data shuffled 

between the Map and Reduce tasks and reduce computational complexity. It is used to 
perform the determination task of the local k nearest neighbors. Each Combiner function 
receives the set of <id, <d, c>> pairs with the same key (i.e., record id), and then sorts the 
key-value pairs by the distance in ascending order. According to the sorted pairs, only the k 
key-value pairs with the smallest distance will be output to Reducer. That is, the selected 
pairs are confirmed as the nearest neighbors. Obviously, the intermediate data would be 
reduced through the following rate equation:  
 

𝑅𝑅 =  �1 − 𝑘𝑘
𝑁𝑁𝑇𝑇𝑇𝑇

�  × 100%     (4) 

 
where, k is the number of the selected nearest neighbors, NTr is the number of all the traffic 
records in the state space. 
 
Algorithm 2 Combiner Function () 
 
Input: <key1, value1> 
key1 : the same key of Map output for each Combiner 
value1 : the corresponding value with the same key of Map output 
Output: <key2, value2> 
key2: id  of the output mapped flows from the combiner to be used in the reducer 
value2: <d, c> 
1: //based on proximity calculations by the distance (d) we arrange all flow entries in an ArrayList  

to sorted by the key-value pairs 
2: for all key and value do 
3:  ArrayList.add (vector(<d, c>)); 
4:       Sort (ArrayList); 
5:       //Select k key-value pairs of flow entries with the smallest distance & output to the  

       Reducer  
6:       Context.write(id, ArrayList.get(k)); 
7: end for 
8: return < key2, value2> pairs; 

 

Fig. 6. Combiner Function 

3.3.4 Reducer Function 
Finally, the Reducer function (see Algorithm 3 in Fig. 7) is designed to determine the 

global nearest neighbors.  it emits the Combiner output (i.e., the k key-value pairs with the 
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smallest distance) as an input. Next, the Distance Weighted Voting scheme (Eq. 2) is 
employed to determine the class label. Then, the reducer judges whether the classification 
result is accurate and accordingly returns the value 1 or 0 to indicator function. Finally, the 
classification result will be sent to the main program and the compatibility value will be 
computed. Then,  a cluster id is assigned to the flow.  

 
Algorithm 3 Reducer Function () 
 
Input: < key2, value2> 
key2: the key of Combiner output  
value2: the value of Combiner output 
Output: < key3, value3> 
Key3: id  
value3: traffic aggregation cluster id for proximity flows 
1: Add the key-value pairs to the ArrayList for the sorting operation 
2: for all key and value do 
3:    ArrayList (vector (<d,c>)); 
4:     Sort (ArrayList); 
5:      New ArrayList result; 
6:     //Add k samples to result 
7:          result.add (id, ArrayList.get(k)); 
8:         //Determine the class label of testing sample using Eq. 2: and return 1 or 0 to indicator    
 function by judgement  
9:             for all in ArrayList (parkNNO(result)) 
10:                Context.write (id, Cid); 

//Send the classification results to the output with similar flows having being appended an 
unique identifier to flow of similar this is used to now determine the flows are in a 
unique cluster 

11.       end for 
12: end for 
13: return <key3, value3> pairs; 

 
Fig. 7. Reducer Function 

4. Performance Evaluation 
This section reports the experimental results, which are used to evaluate the performance 

of the proposed approach in terms of practicability, efficiency and scalability. The 
experimental setup and evaluation metrics are introduced, then different aggregation 
methods are tested on the same data sets, and finally the results are analyzed in detail. For 
the efficiency and scalability, we adopt two well-accepted metrics: speedup and sizeup (See 
section 4.6 and 4.7).  

We conduct simulations studies through evaluating our scheme, with various criteria to 
observe its performance. In each simulation scenario, we assume ideal requirements and we 
assume we have all the traffic at hand in the simulator and the aggregation algorithm is 
working. The users will send the traffic to the network and the MapReduce cloud will 
capture the traffic characteristics from the controller that is listening to moving traffic. In our 
simulations, we focus on performance of aggregation, time latency and network propagation. 
Each simulation has been repeated at least 10 times to get good statistical results. 



4728                                                                   Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing 

4.1 Evaluation Setup 
The test bed environment, is based on a Hadoop platform on a desktop machine with Intel 

Xeon (R) E7-4820 2.00GHz CPU (dual core) and 4.00GB RAM. All of the experiments are 
performed on Ubuntu 12.04 with 5 Hadoop 1.2.1 virtual machines, each with 2 pseudo nodes. 
The JDK 1.6.0. Floodlight and Mininet environments is set up. We use MapReduce test bed 
on Hadoop environment. 

Sample traffic flows are generated for performance evaluation based on a Markovian 
Additive Process to ensure random distribution of characteristics. We use 4 Tuples (Content, 
Qos, Port, Path) to generate the 100,000 flows characteristics. To ensure random distribution 
of the sequence of 4 tuple categories, mixed flow sizes are considered  for mice flow traffic 
and elephant flow traffic. The packet sizes are limited to the 4 10B, 150B, 10Kb, 150Kb for 
mice flows and elephant flows.Before the beginning of experiments, we need to consider a 
few observations.  

• Mapreduce will consume data in form of text files, so the traffic load or traffic data 
will be converted from generated pcap files into text files using a java pcap to txt 
converter. 

• Random traffic is generated using a python network simulator to generate customized 
network traffic streams. The input is a list of defined parameters. The output is 
packets with various attributes and payloads for mice and elephant flows. 

In this performance evaluation, we try to observe the effectiveness of our proposed 
solution. First, we conduct experiments to compare our algorithm to a simple sort algorithm. 
Second, we compare aggregation latency on the control plane and the data plane. The third 
experiment will show our  proposed algorithm can perform aggregation based on device 
preferences dynamically. In the end, for further verifying the efficiency and scalability, we 
evaluate the 2Ss characteristics (i.e., Speedup, and Sizeup [24] [25]) of our classifier.  

4.2 Algorithm Evaluation 
Table 1. Variables for Algorithm Evaluation 

Parameters Setting Values 
Number Of Flows  Dynamic (10k~100k) 
Aggregation Algorithm 1 Dynamic Parknno Algorithm 
Aggregation Algorithm 2,3 Static, Non-aggregation Algorithm 
Traffic Generation Random Traffic 
Traffic Tuples 4 Tuples (Content, Qos, Port, Path) 
Aggregation nodes 1 node 
Simulator MapReduce  

 
This experiment is conducted on a MapReduce platform, we analyze over 100,000 flows, 

using 4 Tuples (Content, Qos, Port, Path) that constitute the traffic variables. We try to 
evaluate the amount of aggregation done on the flows by comparing our algorithm to a 
simple sort clustering algorithm. The static algorithm is preconfigured to cluster or 
aggregate the flows using the best effort or highest aggregation matches by ranking. 
Our dynamic algorithm will take into considerations for multiple characteristics to 
provide various options to aggregate flows, thus having varied aggregation based on 
the tuples characteristics, while the static algorithm only considers a general aggregation 
scheme based on a general nearest neighbor clustering methodology.  
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This experiment aims to show that the reduction of flow count may lead to better flow 
handling with aggregated flows being served. By dynamically increasing the amount of 
flows being processed, we are able to determine the aggregation output and compare the 
result sets. We observe in Fig. 8 the aggregation algorithm significantly reduces the flow 
count by up to a factor of 30%. 

  
Fig. 8. Flow Aggregation Comparison   

4.3 Aggregation Latency Evaluation 
Table 2. Variables for Algorithm Latency 

Parameters Setting Values 
Number Of Flows  Dynamic (10k-100k) 
Traffic Payload 10Bytes, 150Bytes, 10Kbits, 150Kbits 
Algorithm used Parknno  
Traffic Generation Random Traffic 
Traffic Tuples 4 Tuples (Content, Qos, Port, Path) 
Transmission rate 2.5Mbps 
Aggregation nodes 2 nodes 
Simulator Python Network Load Simulator 
Simulator 2 MapReduce  

 
In this scenario, we consider that all the traffic are either mice flows or elephants flows 

with a constant payload size and check how to monitor the aggregation latency. We consier 
the packet size for mice flows of signaling and voice traffic with a minimum of 10Bytes and 
a maximum of 150Bytes. We take into account elephant flows of h.264 packet size with a 
minimum of 10Kbits and a maximum of 150Kbits. The control plane latency is defined as 
the time taken to process the incoming non-aggregated flows and generate the result of 
aggregated flows on the analysis process. The data plane latency is the delay in transfer of 
the original non-aggregated flows from initial. 
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Firstly we conduct the simulation on the control plane, we use a flow collector java 
application. It collects the traffic files, converts the data and assembles it in text files to be 
readable in MapReduce. We consider the traffic details from the flow parameters, as input, 
the application converts the data into MapReduce readable format. Flow data is saved into 
files associated with each flow characteristic. We make an assumption that the processing 
time of the files accounts for control plane processing latency. We consider the processing of 
these traffic parameters between the control plane and the initial MapReduce platform as the 
processing latency for the files. 

In Fig. 9, there is not much significant latency change in terms of processing time taken 
by the different flow scale in thoughsands of flows. On the control plane processing, packet 
load size is not considered when processing on the MapReduce. The processing time will 
depend on the processing load and other operational interferences. 

 
Fig. 9. The Processing Time on Control Plane 

 
In the second part, the same payload parameters are generated with the packet sizes and 

we run through our python simulator with our aggregation algorithm. Python simulator will 
help us craft out network traffic, we input the parameters to generate the traffic packets, and 
we input the packet generation range of parameters. We define a range for the four tuples 
(Content, Qos, Port, and Path) and packets will be generated based on the characteristics of 
the 4 tuples. Once the packets are generated the several streams at different rates, we define a 
user script with parameter preferences to simulate each network node aggregation We limit 
the amount of transmission rate at a maximum of 2.5Mbps for the data processing of the 
payloads on the network simulator. We observe in Fig. 10. that it takes more significant time 
to perform aggregation for the heavier payload flow. 
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Fig. 10. The Processing Time on Data Plane    

 

4.4 Dynamic Aggregation Evaluation 
 

Table 3. Variables for Dynamic Aggregation Evaluation 
Parameters Setting Values 
Number of Flows  Dynamic (20k, 40k, 70k, 80k) 
Algorithm  ParkNNO  
Traffic Generation Random Traffic 
Traffic Tuples 4 Tuples (Content, Qos, Port, Path) 

Aggregation Nodes 3 nodes 
Simulator  MapReduce  

 
In this scenario, we want to do experiment on how our dynamic aggregation will perform 

based on each network node characteristics. We simulate device preferences to determine the 
aggregation policy on each network node. With the increased number of traffic flows, we 
compare what is the aggregation performance on the similar traffic sets. We run the proposed 
aggregation scheme on 3 MapReduce nodes in order to observe how it works on a parallel 
scenario. We want to observe the aggregation ratios as the flows increase. Fig. 11 shows a 
comparison for different traffic flows set, 2000 flows in (a) and 7000 flows in (b). 
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(a) 20,000 flows 

 
(b) 70,000 flows 

Fig. 11. Aggregation with various preferences over network devices 
 

From the above experiment results in Fig. 11, we can determine that our algorithm has a 
good performance in terms of dynamic aggregation based on device preferences, considering 
the same flows being aggregated based on device preferences. We observe higher amounts 
of aggregation pivoting on each device characteristics if flow scale is increased from 2000 to 
7000 flows. 
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4.5 Speedup Evaluation 
Speedup metric measures how much the parallel working algorithm is processing data 

faster than the corresponding sequential algorithm does not on a MapReduce platform, which 
is defined as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇1
𝑇𝑇𝑝𝑝

 ,     (4) 

where, T1 represents the sequential execution time of the algorithm on one node for traffic 
flow aggregation using the given data set, and Tp denotes the parallel execution time of the 
algorithm for solving the same issue using the same data set on a MapReduce cluster with p 
nodes. We conduct simulations for evaluating our dynamic ParkNNO algorithm, with 
various criteria to observe its performance, in each simulation scenario. It is assumed that we 
have ideal requirements with all the traffic at hand in the simulator and the aggregation 
algorithm works correctly. The users will send the traffic to the network and the MapReduce 
cloud will capture the traffic characteristics from the controller. To validate our algorithm, 
we perform experiments iteratively with up to 4 nodes and varying the amount of flows from 
10-70,000 flows, observe how our algorithm performs, and see how it performs in a parallel 
MapReduce environment. It can be observed in Fig. 12. that the proposed ParkNNO has 
significantly good speedup performance over the big data platform with large datasets and is 
near linearly increasing with the increased number of nodes. It significantly outperforms 
with all of data sets.   

 
Fig. 12. SpeedUp 

4.6 Sizeup Evaluation 
Sizeup metric validates how much longer the parallel algorithm takes to perform 

aggregation on a given fixed number of nodes, when the size of the data flow set is larger 
than the original data set. Which is defined as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑥𝑥
�

𝑇𝑇𝑥𝑥
,      (5) 

where, Tx denotes the execution time of the algorithm for processing the original data set on 
the given fixed number of nodes, and 𝑇𝑇𝑥𝑥�  represents the execution time of the algorithm for 
coping with x-times larger sized data sets on the fixed number of nodes . Here, the aim of the 
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sizeup analysis is to keep the number of nodes p constant and incrementaly grow the size of 
flow set x, in order to evaluate the variation of execution time. For our experiment we 
conduct simulations studies with up to 4 available distributed nodes in order to evaluate its 
sizeup performance. The experiment is conducted on a cluster with fixed number of nodes, 
from 1 node to 4 nodes, and increasing the amount of traffic flows and recording the 
executions times for the increased data sets, the experiment is repeated for each node cluster 
from 1 to 4 and the executions times plotted as shown in Fig. 13. It is observed that the 
proposed algorithm has a good sizeup ratio with an increasing traffic data sets. However, we 
should also take into account communication costs between the increasing number of nodes,  
which might also account for some latency in processing time. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑝𝑝       (6) 

In addition to sizeup, scaleup metric for the algorithm can also be measured from the 
above experiment, it is defined as the average sizeup per node. Which is calculated by From 
the experiment results, as shown in Fig.13, we determine that ParkNNO under the 
MapReduce framework has significantly good Sizeup and Scaleup metrics and achieves 
aggregation more efficiently with an increasing node scale and flow scale to run parallel 
transaction. And it can be further improved and implemented in a real world scenario.  

 
Fig. 13. SizeUp   

5. Conclusion 
In this paper, we focused on the dynamic aggregation of huge traffic flows and thus 

proposed a new MapReduce-based nearest neighbor approach for traffic flow aggregation 
methodology on a Hadoop platform. In order to lower memory usage and reduce the 
computational costs of large-scale calculations, we integrated a parallel aggregation 
framework composed of the MRM module and the OTAM module.  In particular, to enhance 
the robustness of realtime applications with very large traffic samples, a modified parallel k-
nearest neighbor optimization classifier, ParkNNO, was built to model traffic flow data in 
MRM, and an aggregation method was put forward to generate aggregated traffic in OTAM. 
Furthermore, we evaluated the proposed approach  in terms of practicability, efficiency and 

0 10 20 30 40 50 60 70 80 90 100

Flows(in thousands)

0

20

40

60

80

100

120

140

160

180

200

Pr
oc

es
si

ng
 T

im
e 

(m
s)

1 Node

2 Nodes

3 Nodes

4 Nodes



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017                            4735 

scalability. It is still an open issue on how to aggregate flows appropriately and needs to be 
further studied as the topic of big data. Our future works will investigate the behavior of 
multiple clustered traffic, analyze 5G traffic statistical characteristics and improve the 
aggregation architecture. 
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