
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, Oct. 2017 4717
Copyright ⓒ2017 KSII

Big Data Based Dynamic Flow
Aggregation over 5G Network Slicing

Guolin Sun1, Bruce Mareri1, Guisong Liu1, Xiufen Fang2, Wei Jiang3,4

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China
Chengdu, Sichuan, 611731, P. R. China

2 School of Mathematical Sciences, University of Electronic Science and Technology of China
Chengdu, Sichuan, 611731, P. R. China

3 German Research Center for Artificial Intelligence (DFKI GmbH), Kaiserslautern, Germany
4 Department of Electrical and Information Technology (EIT), Technische University (TU) Kaiserslautern,

Germany
[e-mail: guolin.sun@uestc.edu.cn]

*Corresponding author: Guolin Sun

Received February 16, 2017; revised April 27, 2017; accepted June 1, 2017;
published October 31, 2017

Abstract

Today, smart grids, smart homes, smart water networks, and intelligent transportation, are
infrastructure systems that connect our world more than we ever thought possible and are
associated with a single concept, the Internet of Things (IoT). The number of devices
connected to the IoT and hence the number of traffic flow increases continuously, as well as
the emergence of new applications. Although cutting-edge hardware technology can be
employed to achieve a fast implementation to handle this huge data streams, there will
always be a limit on size of traffic supported by a given architecture. However, recent cloud-
based big data technologies fortunately offer an ideal environment to handle this issue.
Moreover, the ever-increasing high volume of traffic created on demand presents great
challenges for flow management. As a solution, flow aggregation decreases the number of
flows needed to be processed by the network. The previous works in the literature prove that
most of aggregation strategies designed for smart grids aim at optimizing system operation
performance. They consider a common identifier to aggregate traffic on each device, having
its independent static aggregation policy. In this paper, we propose a dynamic approach to
aggregate flows based on traffic characteristics and device preferences. Our algorithm runs
on a big data platform to provide an end-to-end network visibility of flows, which performs
high-speed and high-volume computations to identify the clusters of similar flows and
aggregate massive number of mice flows into a few meta-flows. Compared with existing
solutions, our approach dynamically aggregates large number of such small flows into fewer
flows, based on traffic characteristics and access node preferences. Using this approach, we
alleviate the problem of processing a large amount of micro flows, and also significantly
improve the accuracy of meeting the access node QoS demands. We conducted experiments,
using a dataset of up to 100,000 flows, and studied the performance of our algorithm
analytically. The experimental results are presented to show the promising effectiveness and
scalability of our proposed approach.

Keywords: Dynamic aggregation; big data; IoT; flow aggregation;

https://doi.org/10.3837/tiis.2017.10.003 ISSN : 1976-7277

4718 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

1. Introduction

In smart cities, the main objective of IoT is to have the ability to uniquely recognize, signify
and access things anytime and anywhere in the Internet. The applications of interest range
from systems supporting urban mobility and its safety such as smart parking, traffic
congestion, intelligent transportation systems, monitoring or optimizing assets and critical
infrastructures in cities for structural health, smart lighting and smart roads.

With the increasing popularity of wireless sensor networks, the amount of sensory data is
increasing at an explosive rate, which up to now exceeds a few petabytes annually. The
major challenge for mobile networks is to provide the much needed throughput for the
increased traffic demand. The ever increasing speeds and volumes of transmission in 4G and
5G networks, present great challenges for traffic flow management. The first challenge is
QoS for the required traffic networks needs to adapt and provide the capacity to handle this
rapid growth of data efficiently. The second is that the traffic requires a lot of resources, both
in bandwidth for flow transmission and the adaptability to determine the best method to
transmit the traffic.

5G networks must support a variety of very diverse use cases with different requirements
for latency, throughput, and availability [1]. The dynamic network slicing concept offers a
way to optimize 5G networks. The current “one-size-fits-all” approach to wireless networks
for all use cases and services to every device everywhere is no longer viable. To meet the
future performance expectations, individual network segments, Radio Access Network
(RAN), transport, core network and edge cloud, which were formerly treated completely
separately, must be re-evaluated. Their performance must be adapted and coordinated to
deliver a specific flow, for a specific user, at specific time.

With this in mind that the high amount of traffic from sensors and other IoT devices are
generated, special consideration is given to ensure end to end QoS. But in high volumes, a
lot of resources are consumed in signaling and processing the flows, thus increasing latency.
Solutions need to be implemented in order to ensure efficiency of these small mice flows.
Taking into account the versatile attributes of each network slice, traffic requires effective
and efficient management. These scalability issues motivate us to use some way or form of
traffic reduction in this case flow aggregation. Several aggregation methods have been
proposed in [2] [3] in a static way, which is not sufficient enough to guarantee large amounts
of IoT mice flows and elephant flows aggregations. Due to this intrinsic relevance, there are
many works that propose dynamic and adaptive aggregation schemes [4]. Others propose big
data solutions to improve performance of networks analysis [5]. We can put forward the idea
of having a dynamic flow aggregation methodology that is using the parallel processing big
data applications to manage large scale wireless network data as proposed in [6].

Our main goal of this work is to propose and evaluate a algorithm of dynamic flow
aggregation under a MapReduce framework on a Hadoop platform. We propose a Parrallel
KNN algorithm in this paper, which is called as ParkNNO, to handle a massive number of
mice flows and elephant flows in a dynamic and proactive way, so as to ensure that traffic is
sufficiently aggregated based on the device. In MapReduce module, flow analysis and large-
scale traffic data are taken as the input of Parrallel KNN classifier, which will generate the
classification results. With the output of MapReduce module and the current data observed,
we can achieve real-time aggregation results. The experimental results demonstrate that the
proposed approach has a significant performance gain by speeding up the classification

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4719

process and reducing the storage requirements. More importantly, with reasonable execution
time, the classification performance can be significantly improved by flow aggregation
information.

The rest of paper is organized as follows: In Section 2, we review the previous works in
the field of traffic aggregation. Section 3 we define our proposed dynamic aggregation and
give an overview of the algorithm implemented in MapReduce.Section 4 presents
experimental results in term of performance evaluation, and we compare the dynamic and
static aggregation algorithms by means of the latency and compare how it performs on a
parallel nodes and make our conclusion in Section 5.

2. Related Work
Flow aggregation is vitally important for network management, accounting and performance.
The idea of flow aggregation has been explored to address the scalability issue of OpenFlow
(OF)-based SDN. Flow aggregation combines a set of individual flows with same forwarding
and performance requirements into an aggregated flow, which can be processed as one flow
for admission control as well as forwarding decisions. Flow aggregation can mitigate the
processing load at the controller, reduce communication overhead between the controller and
switches, and limit the sizes of flow tables at switches, enhancing the scalability of OF-based
SDN. For example, DevoFlow framework is proposed in [7] to achieve scalable flow
management and a MiceTrap mechanism is reported in [8] as a scalable traffic engineering
scheme with aggregation of a large number of short-live flows.

In the previous works [9], flow aggregation is performed at the device level, where each
network device performs isolated aggregations based on resource availability and efficiency
of the device. This might not be an efficient way of flow aggregation in the 5G scenario of
massive terminals, where a lot of devices are interconnected. Some aggregation architectures
only perform path based aggregation, which might introduce higher latency in terms of
different QoS needs of various traffic generated by a single source[10]. In [11], they provide
a more refined approach for aggregation with a classification algorithm that classifies traffic
based on its qualities on an Openflow network and reduces network load significantly, but
still we need a more robust and scalable methodology to handle aggregation for traffic
generated by massive terminals, efficiently. 5G slicing networks introduces the concept of
networking slicing [12] [13]. There are some proposed models which focus on classifying
and measuring QoS requirement and data traffic of M2M applications. In one approach [14],
a data aggregation method has been proposed that relies on aggregating data from several
M2M devices at the Packet Data Convergence Protocol (PDCP) layer of the Relay Node
(RN), using a data traffic slicing algorithm which enhances QoS by efficient utilization of
the 5G radio resources for M2M and the principle idea of Priority Queue (PQ) approach.

When analyzing a large volume of traffic data for detailed statistics for a long-period or on
a large-scale network, it is not easy to handle Tera or Peta-byte traffic data with a single
server. As distributed parallel processing schemes have been recently developed, they could
be usefully applied to analyzing big traffic data, especially in 5G network [15]. Thus, in this
paper, we use open source Hadoop based MapReduce software framework of the cloud
computing platform for a large-scale network data processing. Previously MapReduce has
been used for Internet traffic measurement and analysis of network traffic activities,
analyzing large volumes of data from various network nodes [16] [17]. It has been proven as
a reliable cloud computing platform to process traffic and weblog analysis. It has been

4720 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

suggested as an efficient solution for processing the flow data collected from switches and
performs near real-time computations, which in our case are vital for massive flow
aggregation.

3. The Proposed Approach
Generally, Internet traffic measurement and analysis are executed on a high-performance

central server. Popular tools such as tcpdump or Coralreef are usually run on a single host to
capture and process packets at a specific monitoring point. Flowscan, is widely used to
generate traffic statistics. However, when we anatomize traffic in a large-scale network, we
are often confronted with hard challenges of handling a huge amount of traffic data for
processing and management. For example, when ISPs monitor traffic in a nation-wide
network consisting of hundreds or thousands of routers capable of exporting Cisco NetFlow
data, it is not easy to compute traffic statistics from many large flow files in short time. In
order to lessen the volume of continuously streaming flow data, packet sampling or flow
aggregation techniques are used. Otherwise, after processing packet traces, we leave only the
statistics information results.

Different traffic aggregation strategies have been implemented in enterprise networks, and
with the growth of network infrastructure, scalability for traffic aggregation also grows. In
[2], a static aggregation strategy is proposed where a common identifier is used to aggregate
common traffic across a single path. This method identifies the micro-flows as a single unit
meta-flow throughout the network path. One downside of this method is that each device has
its own QoS requirement. Aggregation using a single factor cannot guarantee effective QoS
for all of the different devices handling traffic. We propose to aggregate traffic dynamically
using a controller based aggregation within an overall network. For each network device, we
guarantee QoS by trying to aggregate traffic flows based on a combination of various flow
tuple characteristics, and considering the device QoS preferences.

Here, we detail our proposed MapReduce-based nearest neighbor approach for massive
flow aggregation using term frequency for traffic analysis. By capturing incoming traffic
flow metadata, we analyze the flows to generate the aggregated flows. We aim to design and
deploy a framework to detect, analyze and aggregate flows. We consider a 5G network with
various devices with specific QoS requirements that need to be met. We consider the large
amounts of traffic generated by the networks and all need end to end QoS requirements
guaranteed. The major concern is to ensure network resources efficiency by managing a
large number of flows in the network. Flow aggregation needs to carry out instantaneously as
the traffic is going through the network and should be dynamic to the requirements of the
network nodes handling the traffic.

3.1 Network Architecture
Our SDN architecture consists of a controller and a Hadoop platform connected on the

control plane. The controller is connected to all the access nodes in the network and manages
them through an open flow control protocol. The cloud of sensors with massive terminals
generates the traffic within our network, and an IoT gateway manages traffic for each cloud.
The BTS units are the radio interfaces connected to the IoT gateways. The V-SGW (Serving
gateway) within the core network originates and terminates signals and data streams from the
BTS. It is also be used as a central switch for inter-BTS connectivity. The edge of network,
Internet Gateway Router, is to bind traffic IP addresses to destinations. Fig. 1 shows the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4721

devices in a network topology that will benefit significantly from flow aggregation of data
through the data plane (i) IoT Gateway, content based aggregation on traffic will help in
mitigating the processing of high volume mice flows, with diverse protocols, connectivity
models and energy profiles generated from the cloud of sensors. (ii) Base Stations are the air
interface channels that transmit traffic based on QoS slicing of traffic. The flow aggregation
based on QoS will ensure differentiated services. (iii) The V-SGW transmits traffic through
port allocation within the core network. The port based flow aggregation will ensure load
balancing within the core network. (iv) The access router connected to the Internet will
aggregate based on path or destination. The 4-level devices are all connected to a controller,
which is able to monitor and control the device operations, and the controller is connected to
the MapReduce platform for decision making.

Fig. 1. The proposed big data architecture

3.2 Protocol Design
A system model for flow aggregation in OF-based SDN is illustrated in Fig. 2, and then

we apply the model to determine the amount of network resources required by a new arrival
flow to meet its aggregation requirement. The aggregation decision for the flow is made
based on the determined policy requirement of each device.

The network protocol is designed with the control plane and data plane to facilitate our
methodology. Our approach will combine a big data analysis engine and an SDN controller
to perform parallel flow analysis and aggregation. The generated result sets will be used to
determine the flow tables on the devices in the network. We shall be using an improved
classification algorithm that has been modified to work with parallel MapReduce
methodology. Each Openflow device is equipped with a flow collector. The flow data are
captured and saved into files associated with each flow-exporting device. Collecting details
of each flow will be analyzed by MapReduce to generate outputs and determine decision on
the data plane. The MapReduce engine will be taking into consideration two vital elements
to ensure that our algorithm is efficient. (i) The traffic flow data tuples and (ii) The device
characteristics, as our key parameters to allow dynamic aggregation.

The MapReduce module is located at the controller with overall network (see section 3.3).
All of the aggregated individual flows will be treated as one flow by the device on the
forwarding path. The aggregated flow table will be implemented based on the group feature
defined in OpenFlow specification [18]. Virtual tables and group tables can be used along

4722 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

with flow tables to control packet forwarding in the devices. In our scenario, we consider a
single flow analysis and aggregation, while there typically are multiple aggregated flows at
each device.

The flow collector sends new flow details to the MapReduce on the control plane, where it
analyzes various flow details and generates a clustered output. The result is determined for
flow aggregation. Individual policy of flow aggregation decision is made based on the
current device preference and flow characteristics. If the flow is accepted, the flow manager
on the controller will send flow table update information to the processing module in the
switch, where bandwidth and buffer space will be allocated for forwarding packets of the
newly accepted aggregated flows.

Fig. 2. The proposed protocol design

 Our protocol works as shown in Fig. 2, with six steps in more detailed procedure. (1)
Each open flow device is enabled with a flow collector. The traffic flow details are captured
by a flow collector and sent the flow metadata to the controller. The metadata information
includes IP destination, content type, QoS level, and the device originating traffic, even
packet-size. (2) A MapReduce agent at the controller will capture, sort and process the
received metadata from the flow collector, which is ready to be exported to the MapReduce
platform. (3) The sorted data is arranged and the MapReduce agent exports the converted
data into MapReduce readable format on HDFS (Hadoop File System) to be processed in the
analyzer. (4) MapReduce performs analysis, taking into account the device preference
characteristic, to define what kind of policy it should action. If a device is an IoT gateway,
the flow aggregation policy will be based on content prioritized aggregation to mitigate
signaling burden on the air-interface. (5) Once the Analyzer has completed analysis and a
new result set is generated composed of aggregated flow results and their specific device
origin, they are sent to the MapReduce agent. The MapReduce Agent will send the
aggregation result sets as a policy result for the flow manager to decide the actions on the
flow tables. (6) The flow manager will use the result as flow table rules, which will be used
to generate the flow table instructions. The instructions are sent to the relevant devices on the
data plane through the open flow protocol.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4723

Fig. 3 shows the decision framework connecting the control plane and data plane modules.
There are two important modules: MapReduce module (MRM) and Online traffic
aggregation module (OTAM). The MRM module takes analy

sis of device preference and flow metadata as input to build our classifier. For the
accurate traffic flow classification (see Section 3.3), it particularly focuses on fast finding the
nearest neighbors of a traffic sample through speeding up the classification process and
reducing the storage requirements on a distributed Hadoop platform. The OTAM module
aims to generate the aggregation results in parrallel with the current traffic flow data and the
classification results of our ParkNNO classifier obtained from the traffic flow data, and
reduce the computational cost and memory consumption of big traffic flow data processing
on a parallel MapReduce framework.

Fig. 3. Traffic Aggregation Decision Framework

3.3 The proposed algorithm on MapReduce
Here, we describe the implementation of our classifier following a MapReduce procedure

to improve the classification process and reduce the storage requirements for high volume
traffic flow aggregation. To improve the efficiency and scalability, we modify the standard
KNN classifier to run in a parallel Mapreduce environment and breakdown the algorithm to
Mapreduce jobs. We call our modified KNN classifier as ParkNNO classifier. The multiple
MapReduce jobs, split from KNN, are carried out in the Map, Combine, and Reduce phases
by the corresponding functions, respectively. Fig. 4 illustrates the computation flowchart of
KNN on MapReduce and its data flow of MapReduce with an example of 4-nearest
neighbors. After the Map, Combine and Reduce tasks, we can utilize current traffic flow data
based on the selected k nearest neighbors outputted from MapReduce jobs. To generate
aggregated traffic policies, as described above, the Mapper, Combiner, and Reducer
functions are designed to reduce computational costs and save memory for classification.
The number of Mappers relies on input splits, whereas the number of Combiners and
Reducers is equal to the group of keys, which is generated from the mapping process.

4724 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

TRAFFIC
SAMPLES

[12 TRAFFIC
FLOW]
AND

[3 DEVICE
PREFS]

SPLIT 1

SPLIT 2

SPLIT 3

SPLIT 4

MAPPER 1

MAPPER 2

MAPPER 3

MAPPER 4

COMBINER 1

COMBINER 2

COMBINER 3

REDUCER 1

REDUCER 2

REDUCER 3

OUTPUT

<1<82,A>> <1<1,A>>
<1<99,B>> <1<23,A>>
<2<19,C>> <2<2,B>>

<2<28,B>> <2<36,B>>
<3<3,B>> <3<61,B>>
<3<35,A>> <3<6,C>>

<1<5,A>> <1<15,B>>
<1<3,A>> <1<26,A>>
<2<6,B>> <2<96,B>>

<2<43,A>> <2<30,B>>
<3<9,C>> <3<56,C>>

<3<29,A>> <3<94,B>>

<1<65,C>> <1<7,A>>
<1<53,B>> <1<57,C>>
<2<4,B>> <2<22,A>>

<2<16,B>> <2<62,A>>
<3<12,C>> <3<52,A>>
<3<32,A>> <3<58,B>>

<1<86,C>> <1<9,B>>
<1<19,A>> <1<34,B>>
<2<8,C>> <2<120,A>>
<2<72,B>> <2<10,B>>
<3<40,C>> <3<11,C>>

<3<101,B>> <3<78,A>>

<1<1,A>>
<1<3,A>>
<1<5,A>>
<1<7,A>>

<2<2,B>>
<2<4,B>>
<2<6,B>>
<2<8,C>>

<3<3,C>>
<3<6,C>>
<3<9,C>>

<3<11,C>>

<*,1>

<*,0>

HANDOOP
FILE SYSTEM SPLITTING

NEAREST NEIGHBOR CALCULATION

SHUFFLING AND SORTING RECORDS

CLASSIFICATTION ANALYSIS

MERGING OUTPUT

INPUT SPLIT MAP COMBINE REDUCE OUTPUT

Fig. 4. Flowchart of Our Parallel KNN on MapReduce

3.3.1 KNN classifier on MapReduce
In our approach, we use a modified KNN although standard KNN is a widely applied as

a non-parametric NN approach[19]. The k nearest neighbor-based approach has a superior
classification performance with three significant advantages: (i) it doesn’t need a
complicated training procedure, (ii) minimal or no risk over fitting of parameters, and (iii) it
is ideally capable of processing a huge amount of classes [20]. It commonly makes
classification decision on the basis of closest training samples in the feature space [21]. The
classifier is presented on the MapReduce framework to enhance the accuracy, efficiency and
scalability of traffic flow aggregation, by facilitating the discovery and integration of
correlational information between traffic flows, into the classification process[22] [23].

According to KNN, we define 𝑥𝑥 as the data record and 𝑦𝑦 is the corresponding class label.
The main objective of k-nearest neighbor classifier is to discover set of k objects in the
training set that are similar to the objects in the test group. The KNN algorithm calculates the
similarity between each testing sample te = (x’,y’) and all the training samples (x,y) ∈ Tr to
determine its nearest-neighbor list, Trte. Where the state space Tr is defined as all the traffic
attributes from all the flows combined from training samples of each flow component. Each
flow component includes a set of n attributes. The testing sample is the initial flow data to be
used to determine its nearest neighbor. Once the nearest-neighbor list is obtained, the testing
sample is classified based on the majority class of its nearest neighbors by the Majority
Voting approach (see Eq. (3)). In our scenario each flow with n attributes will be classified
and filtered using our algorithm to calculate its nearest neighbor, which is calculated by
observing which flows have more similar n attributes, once this list is generated it is then
filtered using a majority voting approach to ensure flows with the highest number of
similarities are classified together. The KNN uses the following search parameters; (i) it
defines a state space, in our case a list of all the flows attributes. (ii) it measures the
similarity distance between 𝑥𝑥 and each component of 𝑦𝑦 in terms of text documents, using a
Euclidean distance, given by

𝑑𝑑𝑖𝑖(𝑥𝑥,𝑦𝑦) = �∑ �𝑥𝑥𝑗𝑗 − 𝑦𝑦𝑗𝑗𝑖𝑖�
2𝑛𝑛

𝑗𝑗=1 (1)

where, 𝑥𝑥𝑗𝑗 is the value of the jth attributes in the current data vectors and 𝑦𝑦𝑗𝑗𝑖𝑖 is the value of the
jth attributes of the ith components. 𝑑𝑑𝑖𝑖(𝑥𝑥,𝑦𝑦) is the distance between the current data and the ith
components in the state space.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4725

In our MapReduce scenario, we find similarity given two flows, 𝑑𝑑𝑎𝑎 and 𝑑𝑑𝑏𝑏 represented
by their term vectors 𝑡𝑡𝑎𝑎���⃗ and 𝑡𝑡𝑏𝑏���⃗ respectively. Using the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 value as term weights, 𝑤𝑤𝑡𝑡,𝑎𝑎 =
 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑑𝑑𝑎𝑎 , 𝑡𝑡), and 𝑤𝑤𝑡𝑡,𝑏𝑏 = 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑑𝑑𝑏𝑏 , 𝑡𝑡) , substituting 𝑥𝑥𝑗𝑗 = 𝑤𝑤𝑡𝑡,𝑎𝑎 and 𝑦𝑦𝑗𝑗𝑖𝑖 = 𝑤𝑤𝑡𝑡,𝑏𝑏 , from the
previous equation (1), we define the Euclidean distance of the two documents as

𝐷𝐷𝐸𝐸 �𝑡𝑡𝑎𝑎,����⃗ 𝑡𝑡𝑏𝑏���⃗ � = �∑ �𝑤𝑤𝑡𝑡,𝑎𝑎 − 𝑤𝑤𝑡𝑡,𝑏𝑏�
2𝑚𝑚

𝑡𝑡=1 �
1/2

 (2)

where, 𝐷𝐷𝐸𝐸 �𝑡𝑡𝑎𝑎,����⃗ 𝑡𝑡𝑏𝑏���⃗ � is the distance between the current data and the ith flow components in
the state space, 𝑤𝑤𝑡𝑡,𝑎𝑎 is the value of the jth attributes in the current data vectors and 𝑤𝑤𝑡𝑡,𝑏𝑏 is the
value of the jth attributes of the ith flow components, and m is the number of attributes or
terms that is set 𝑇𝑇 = {𝑡𝑡1, … . , 𝑡𝑡𝑚𝑚} . (iii) Each neighbor has the same influence on the
classification by the Majority Voting approach, thus making the classifier sensitive to the
choice of k. Because we will be having multiple aggregations of flows based on nearest
neighbour we aim to make the aggregations more granular and reduce huge aggregation
clusters. In order to reduce the impact of k, we implement the Distance Weighted Voting
scheme in our classifier, and the class labels for aggregations can be determined by

𝑦𝑦´ = arg𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝐼𝐼(𝑣𝑣 = 𝑣𝑣𝑦𝑦𝑦𝑦)𝑣𝑣 (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝑇𝑇𝑟𝑟𝑡𝑡𝑡𝑡 (3)

where, 𝜔𝜔𝑖𝑖 = 1
𝑑𝑑(𝑥𝑥´,𝑥𝑥𝑖𝑖)2

 is the weight of each nearest neighbor 𝑥𝑥𝑖𝑖 according to its distance, 𝑣𝑣 is
a class label, 𝑣𝑣𝑦𝑦𝑦𝑦 is the class. And I(.) is an indicator function the returns the value 1 if the
argument is TRUE and 0 if the argument is FALSE. When k = 1, the classifier assigns a
testing traffic flow into the class of its nearest training sample which in our case is a cluster of
matching flows attributes.

3.3.2 Mapper Function
Algorithm 1 Mapper Function ()

Input: <key, value>
key: the record id of traffic flows
value: the value of the tuples
Output: <key1, value1>
key1: the record id of the testing samples, id
value1: vector (the calculated distance, d, and the selected class, c)
1: for j = 0 to m do // for each equipment sending flow data id classification
2: for i = 0 to n do
3: //these are the traffic samples, i, and the extracted category labels from Flow tuples, FTr
4: FTr = GetFlowLabel (i);
5: for all p ∈ Traffic flow samples do
6: //each traffic sample, p from specific device category
7: d = parkNNOFunction (p,i);
8: // Eqs. 1
9: Context.write(id, vector (d, FTr));
10: end for
11: end for
12: end for
13: return <id, <d, c>>;

Fig. 5. Mapper Function

4726 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

The Mapper function, (see Algorithm 1) receives each line of the flow sets as a different
key-value pair, then goes through each traffic flow and computes the similarity (or distance)
between each pair of incoming data points and existing data points, te = (x’,y’) and all the
training samples (x,y) ∈ Tr and finally outputs the intermediate results, <id, <d, c>>;, which
form the input to the Combiner function. That is, each produced pair is composed of the
corresponding record id emitted as the key, and the calculated distance and the selected class,
<d, c>, emitted as the value.

3.3.3 Combiner Function
The Combiner function, (see Algorithm 2) is implemented to reduce data shuffled

between the Map and Reduce tasks and reduce computational complexity. It is used to
perform the determination task of the local k nearest neighbors. Each Combiner function
receives the set of <id, <d, c>> pairs with the same key (i.e., record id), and then sorts the
key-value pairs by the distance in ascending order. According to the sorted pairs, only the k
key-value pairs with the smallest distance will be output to Reducer. That is, the selected
pairs are confirmed as the nearest neighbors. Obviously, the intermediate data would be
reduced through the following rate equation:

𝑅𝑅 = �1 − 𝑘𝑘
𝑁𝑁𝑇𝑇𝑇𝑇

� × 100% (4)

where, k is the number of the selected nearest neighbors, NTr is the number of all the traffic
records in the state space.

Algorithm 2 Combiner Function ()

Input: <key1, value1>
key1 : the same key of Map output for each Combiner
value1 : the corresponding value with the same key of Map output
Output: <key2, value2>
key2: id of the output mapped flows from the combiner to be used in the reducer
value2: <d, c>
1: //based on proximity calculations by the distance (d) we arrange all flow entries in an ArrayList

to sorted by the key-value pairs
2: for all key and value do
3: ArrayList.add (vector(<d, c>));
4: Sort (ArrayList);
5: //Select k key-value pairs of flow entries with the smallest distance & output to the

 Reducer
6: Context.write(id, ArrayList.get(k));
7: end for
8: return < key2, value2> pairs;

Fig. 6. Combiner Function

3.3.4 Reducer Function
Finally, the Reducer function (see Algorithm 3 in Fig. 7) is designed to determine the

global nearest neighbors. it emits the Combiner output (i.e., the k key-value pairs with the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4727

smallest distance) as an input. Next, the Distance Weighted Voting scheme (Eq. 2) is
employed to determine the class label. Then, the reducer judges whether the classification
result is accurate and accordingly returns the value 1 or 0 to indicator function. Finally, the
classification result will be sent to the main program and the compatibility value will be
computed. Then, a cluster id is assigned to the flow.

Algorithm 3 Reducer Function ()

Input: < key2, value2>
key2: the key of Combiner output
value2: the value of Combiner output
Output: < key3, value3>
Key3: id
value3: traffic aggregation cluster id for proximity flows
1: Add the key-value pairs to the ArrayList for the sorting operation
2: for all key and value do
3: ArrayList (vector (<d,c>));
4: Sort (ArrayList);
5: New ArrayList result;
6: //Add k samples to result
7: result.add (id, ArrayList.get(k));
8: //Determine the class label of testing sample using Eq. 2: and return 1 or 0 to indicator
 function by judgement
9: for all in ArrayList (parkNNO(result))
10: Context.write (id, Cid);

//Send the classification results to the output with similar flows having being appended an
unique identifier to flow of similar this is used to now determine the flows are in a
unique cluster

11. end for
12: end for
13: return <key3, value3> pairs;

Fig. 7. Reducer Function

4. Performance Evaluation
This section reports the experimental results, which are used to evaluate the performance

of the proposed approach in terms of practicability, efficiency and scalability. The
experimental setup and evaluation metrics are introduced, then different aggregation
methods are tested on the same data sets, and finally the results are analyzed in detail. For
the efficiency and scalability, we adopt two well-accepted metrics: speedup and sizeup (See
section 4.6 and 4.7).

We conduct simulations studies through evaluating our scheme, with various criteria to
observe its performance. In each simulation scenario, we assume ideal requirements and we
assume we have all the traffic at hand in the simulator and the aggregation algorithm is
working. The users will send the traffic to the network and the MapReduce cloud will
capture the traffic characteristics from the controller that is listening to moving traffic. In our
simulations, we focus on performance of aggregation, time latency and network propagation.
Each simulation has been repeated at least 10 times to get good statistical results.

4728 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

4.1 Evaluation Setup
The test bed environment, is based on a Hadoop platform on a desktop machine with Intel

Xeon (R) E7-4820 2.00GHz CPU (dual core) and 4.00GB RAM. All of the experiments are
performed on Ubuntu 12.04 with 5 Hadoop 1.2.1 virtual machines, each with 2 pseudo nodes.
The JDK 1.6.0. Floodlight and Mininet environments is set up. We use MapReduce test bed
on Hadoop environment.

Sample traffic flows are generated for performance evaluation based on a Markovian
Additive Process to ensure random distribution of characteristics. We use 4 Tuples (Content,
Qos, Port, Path) to generate the 100,000 flows characteristics. To ensure random distribution
of the sequence of 4 tuple categories, mixed flow sizes are considered for mice flow traffic
and elephant flow traffic. The packet sizes are limited to the 4 10B, 150B, 10Kb, 150Kb for
mice flows and elephant flows.Before the beginning of experiments, we need to consider a
few observations.

• Mapreduce will consume data in form of text files, so the traffic load or traffic data
will be converted from generated pcap files into text files using a java pcap to txt
converter.

• Random traffic is generated using a python network simulator to generate customized
network traffic streams. The input is a list of defined parameters. The output is
packets with various attributes and payloads for mice and elephant flows.

In this performance evaluation, we try to observe the effectiveness of our proposed
solution. First, we conduct experiments to compare our algorithm to a simple sort algorithm.
Second, we compare aggregation latency on the control plane and the data plane. The third
experiment will show our proposed algorithm can perform aggregation based on device
preferences dynamically. In the end, for further verifying the efficiency and scalability, we
evaluate the 2Ss characteristics (i.e., Speedup, and Sizeup [24] [25]) of our classifier.

4.2 Algorithm Evaluation
Table 1. Variables for Algorithm Evaluation

Parameters Setting Values
Number Of Flows Dynamic (10k~100k)
Aggregation Algorithm 1 Dynamic Parknno Algorithm
Aggregation Algorithm 2,3 Static, Non-aggregation Algorithm
Traffic Generation Random Traffic
Traffic Tuples 4 Tuples (Content, Qos, Port, Path)
Aggregation nodes 1 node
Simulator MapReduce

This experiment is conducted on a MapReduce platform, we analyze over 100,000 flows,

using 4 Tuples (Content, Qos, Port, Path) that constitute the traffic variables. We try to
evaluate the amount of aggregation done on the flows by comparing our algorithm to a
simple sort clustering algorithm. The static algorithm is preconfigured to cluster or
aggregate the flows using the best effort or highest aggregation matches by ranking.
Our dynamic algorithm will take into considerations for multiple characteristics to
provide various options to aggregate flows, thus having varied aggregation based on
the tuples characteristics, while the static algorithm only considers a general aggregation
scheme based on a general nearest neighbor clustering methodology.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4729

This experiment aims to show that the reduction of flow count may lead to better flow
handling with aggregated flows being served. By dynamically increasing the amount of
flows being processed, we are able to determine the aggregation output and compare the
result sets. We observe in Fig. 8 the aggregation algorithm significantly reduces the flow
count by up to a factor of 30%.

Fig. 8. Flow Aggregation Comparison

4.3 Aggregation Latency Evaluation
Table 2. Variables for Algorithm Latency

Parameters Setting Values
Number Of Flows Dynamic (10k-100k)
Traffic Payload 10Bytes, 150Bytes, 10Kbits, 150Kbits
Algorithm used Parknno
Traffic Generation Random Traffic
Traffic Tuples 4 Tuples (Content, Qos, Port, Path)
Transmission rate 2.5Mbps
Aggregation nodes 2 nodes
Simulator Python Network Load Simulator
Simulator 2 MapReduce

In this scenario, we consider that all the traffic are either mice flows or elephants flows

with a constant payload size and check how to monitor the aggregation latency. We consier
the packet size for mice flows of signaling and voice traffic with a minimum of 10Bytes and
a maximum of 150Bytes. We take into account elephant flows of h.264 packet size with a
minimum of 10Kbits and a maximum of 150Kbits. The control plane latency is defined as
the time taken to process the incoming non-aggregated flows and generate the result of
aggregated flows on the analysis process. The data plane latency is the delay in transfer of
the original non-aggregated flows from initial.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Flow Scales (in thousands)

Fl
ow

 C
ou

nt
 (i

n
th

ou
sa

nd
s)

dynamic aggregation
static aggregation
Non aggregation

4730 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

Firstly we conduct the simulation on the control plane, we use a flow collector java
application. It collects the traffic files, converts the data and assembles it in text files to be
readable in MapReduce. We consider the traffic details from the flow parameters, as input,
the application converts the data into MapReduce readable format. Flow data is saved into
files associated with each flow characteristic. We make an assumption that the processing
time of the files accounts for control plane processing latency. We consider the processing of
these traffic parameters between the control plane and the initial MapReduce platform as the
processing latency for the files.

In Fig. 9, there is not much significant latency change in terms of processing time taken
by the different flow scale in thoughsands of flows. On the control plane processing, packet
load size is not considered when processing on the MapReduce. The processing time will
depend on the processing load and other operational interferences.

Fig. 9. The Processing Time on Control Plane

In the second part, the same payload parameters are generated with the packet sizes and

we run through our python simulator with our aggregation algorithm. Python simulator will
help us craft out network traffic, we input the parameters to generate the traffic packets, and
we input the packet generation range of parameters. We define a range for the four tuples
(Content, Qos, Port, and Path) and packets will be generated based on the characteristics of
the 4 tuples. Once the packets are generated the several streams at different rates, we define a
user script with parameter preferences to simulate each network node aggregation We limit
the amount of transmission rate at a maximum of 2.5Mbps for the data processing of the
payloads on the network simulator. We observe in Fig. 10. that it takes more significant time
to perform aggregation for the heavier payload flow.

10 20 30 40 50 60 70 80
2

3

4

5

6

7

8

9

10

Ti
m

e
(m

s)

Flow scale (in thousands)

Mice flows (10B)
Mice flows (150B)
Elephant flows (10Kb)
Elephant flows (150Kb)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4731

Fig. 10. The Processing Time on Data Plane

4.4 Dynamic Aggregation Evaluation

Table 3. Variables for Dynamic Aggregation Evaluation
Parameters Setting Values
Number of Flows Dynamic (20k, 40k, 70k, 80k)
Algorithm ParkNNO
Traffic Generation Random Traffic
Traffic Tuples 4 Tuples (Content, Qos, Port, Path)

Aggregation Nodes 3 nodes
Simulator MapReduce

In this scenario, we want to do experiment on how our dynamic aggregation will perform

based on each network node characteristics. We simulate device preferences to determine the
aggregation policy on each network node. With the increased number of traffic flows, we
compare what is the aggregation performance on the similar traffic sets. We run the proposed
aggregation scheme on 3 MapReduce nodes in order to observe how it works on a parallel
scenario. We want to observe the aggregation ratios as the flows increase. Fig. 11 shows a
comparison for different traffic flows set, 2000 flows in (a) and 7000 flows in (b).

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Ti
m

e
(m

s)

Flow scale (in thousands)

Mice flows (10B)
Mice flows (150B)
Elephant flows (10Kb)
Elephant flows (150Kb)

4732 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

(a) 20,000 flows

(b) 70,000 flows

Fig. 11. Aggregation with various preferences over network devices

From the above experiment results in Fig. 11, we can determine that our algorithm has a
good performance in terms of dynamic aggregation based on device preferences, considering
the same flows being aggregated based on device preferences. We observe higher amounts
of aggregation pivoting on each device characteristics if flow scale is increased from 2000 to
7000 flows.

IoT BTS Gateway Router
0

2

4

6

8

10

12

14

16
A

gg
re

ga
te

d
flo

w
s

(in
 th

ou
sa

nd
s)

Access Device Node Type

Content
QoS
Port
Path

IoT BTS Gateway Router
0

10

20

30

40

50

60

A
gg

re
ga

te
d

flo
w

s
(in

 th
ou

sa
nd

s)

Access Device Node Type

Content
QoS
Port
Path

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4733

4.5 Speedup Evaluation
Speedup metric measures how much the parallel working algorithm is processing data

faster than the corresponding sequential algorithm does not on a MapReduce platform, which
is defined as

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇1
𝑇𝑇𝑝𝑝

 , (4)

where, T1 represents the sequential execution time of the algorithm on one node for traffic
flow aggregation using the given data set, and Tp denotes the parallel execution time of the
algorithm for solving the same issue using the same data set on a MapReduce cluster with p
nodes. We conduct simulations for evaluating our dynamic ParkNNO algorithm, with
various criteria to observe its performance, in each simulation scenario. It is assumed that we
have ideal requirements with all the traffic at hand in the simulator and the aggregation
algorithm works correctly. The users will send the traffic to the network and the MapReduce
cloud will capture the traffic characteristics from the controller. To validate our algorithm,
we perform experiments iteratively with up to 4 nodes and varying the amount of flows from
10-70,000 flows, observe how our algorithm performs, and see how it performs in a parallel
MapReduce environment. It can be observed in Fig. 12. that the proposed ParkNNO has
significantly good speedup performance over the big data platform with large datasets and is
near linearly increasing with the increased number of nodes. It significantly outperforms
with all of data sets.

Fig. 12. SpeedUp

4.6 Sizeup Evaluation
Sizeup metric validates how much longer the parallel algorithm takes to perform

aggregation on a given fixed number of nodes, when the size of the data flow set is larger
than the original data set. Which is defined as

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑥𝑥
�

𝑇𝑇𝑥𝑥
, (5)

where, Tx denotes the execution time of the algorithm for processing the original data set on
the given fixed number of nodes, and 𝑇𝑇𝑥𝑥� represents the execution time of the algorithm for
coping with x-times larger sized data sets on the fixed number of nodes . Here, the aim of the

1 2 3 4

Number of Nodes

0

50

100

150

200

250

Sp
ee

d
U

p
R

at
io

10,000

20,000

30,000

40,000

50,000

60,000

70,000

4734 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

sizeup analysis is to keep the number of nodes p constant and incrementaly grow the size of
flow set x, in order to evaluate the variation of execution time. For our experiment we
conduct simulations studies with up to 4 available distributed nodes in order to evaluate its
sizeup performance. The experiment is conducted on a cluster with fixed number of nodes,
from 1 node to 4 nodes, and increasing the amount of traffic flows and recording the
executions times for the increased data sets, the experiment is repeated for each node cluster
from 1 to 4 and the executions times plotted as shown in Fig. 13. It is observed that the
proposed algorithm has a good sizeup ratio with an increasing traffic data sets. However, we
should also take into account communication costs between the increasing number of nodes,
which might also account for some latency in processing time.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑝𝑝 (6)

In addition to sizeup, scaleup metric for the algorithm can also be measured from the
above experiment, it is defined as the average sizeup per node. Which is calculated by From
the experiment results, as shown in Fig.13, we determine that ParkNNO under the
MapReduce framework has significantly good Sizeup and Scaleup metrics and achieves
aggregation more efficiently with an increasing node scale and flow scale to run parallel
transaction. And it can be further improved and implemented in a real world scenario.

Fig. 13. SizeUp

5. Conclusion
In this paper, we focused on the dynamic aggregation of huge traffic flows and thus

proposed a new MapReduce-based nearest neighbor approach for traffic flow aggregation
methodology on a Hadoop platform. In order to lower memory usage and reduce the
computational costs of large-scale calculations, we integrated a parallel aggregation
framework composed of the MRM module and the OTAM module. In particular, to enhance
the robustness of realtime applications with very large traffic samples, a modified parallel k-
nearest neighbor optimization classifier, ParkNNO, was built to model traffic flow data in
MRM, and an aggregation method was put forward to generate aggregated traffic in OTAM.
Furthermore, we evaluated the proposed approach in terms of practicability, efficiency and

0 10 20 30 40 50 60 70 80 90 100

Flows(in thousands)

0

20

40

60

80

100

120

140

160

180

200

Pr
oc

es
si

ng
 T

im
e

(m
s)

1 Node

2 Nodes

3 Nodes

4 Nodes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4735

scalability. It is still an open issue on how to aggregate flows appropriately and needs to be
further studied as the topic of big data. Our future works will investigate the behavior of
multiple clustered traffic, analyze 5G traffic statistical characteristics and improve the
aggregation architecture.

Acknowledgment
This work is supported by the Fundamental Research Funds for the Central Universities,

under grant no. ZYGX2014J060, the Science and Technology Planning project of Sichuan
Province, China, under grant no. 2016GZ0075 and the ZTE Innovation Research Fund for
Universities Program 2016.

References
[1] Y. Yuan and X. Zhao, "5G: vision, scenarios and enabling technologies," ZTE Communications,

vol. 13, no. 1, pp. 3-10, Mar. 2015. Article (CrossRef Link)
[2] Dolzer, Klaus, Wolfgang Payer, and Markus Eberspacher., "A simulation study on traffic

aggregation in multi-service networks," in Proc. of the IEEE Conference on ATM on High
Performance Switching and Routing, 2000. Article (CrossRef Link)

[3] Li, Xu, Jaya Rao, and Hang Zhang, "Engineering Machine-to-Machine Traffic in 5G,” IEEE
Internet of Things Journal, vol. 3, no. 4, pp. 609-618, 2016. Article (CrossRef Link)

[4] Hu, Yan, Dah-Ming Chiu, and John CS Lui, "Entropy based adaptive flow aggregation,"
IEEE/ACM Transactions on Networking, vol. 17, no.3, pp. 698-711, 2009.
Article (CrossRef Link)

[5] Imran, Ali, Ahmed Zoha, and Adnan Abu-Dayya, "Challenges in 5G: how to empower SON with
big data for enabling 5G," IEEE Network, vol.28, no. 6, pp. 27-33, 2014. Article (CrossRef Link)

[6] Jardak C, Oldewurtel F. "Parallel processing of data from very large-scale wireless sensor
networks," ACM International Symposium on High Performance Distributed Computing, HPDC
2010, Chicago, Illinois, USA, pp.787-794, Jun. 2010. Article (CrossRef Link)

[7] Curtis A R, Mogul J C, Tourrilhes J, et al., "DevoFlow: scaling flow management for high-
performance networks," in Proc. of ACM SIGCOMM 2011 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, Toronto, On,
Canada, pp. 254-265, August. 2011. Article (CrossRef Link)

[8] R.Trestian, G.-M. Muntean, and K. Katrinis, "MiceTrap: Scalable traffic engineering of datacenter
mice flows using OpenFlow," in Proc. of the 2013 IEEE Symposium on Integrated Network
Management (IFIP 2013), pp. 904–907, May 2013. Article (CrossRef Link)

[9] Guo W, Mahendran V, Radhakrishnan S., "Achieving throughput fairness in smart grid using
SDN-based flow aggregation and scheduling," in Proc. of IEEE International Conference on
Wireless and Mobile Computing, networking and Communications, pp.1-7, 2016.
Article (CrossRef Link)

[10] Velan, Petr., "EventFlow: Network flow aggregation based on user actions," IEEE/IFIP Network
Operations and Management Symposium (NOMS), Istanbul, Turkey, 2016.
Article (CrossRef Link)

[11] Khalili, Ramin, et al., "Reducing State of OpenFlow Switches in Mobile Core Networks by Flow
Rule Aggregation," in Proc. of International Conference on Computer Communication and
Networks 2016, pp.1-9, 2016. Article (CrossRef Link)

[12] Sama, Malla Reddy, et al., "Reshaping the Mobile core network via function decomposition and
network slicing for the 5G era," in Proc. of IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), 2016. Article (CrossRef Link)

[13] Katsalis, Kostas, et al., "5G Architectural Design Patterns," in Proc. of 2016 IEEE International
Conference on Communications Workshops (ICC), pp.32-37, 2016. Article (CrossRef Link)

http://wwwen.zte.com.cn/endata/magazine/ztecommunications/2015/1/articles/201504/t20150401_432740.html
https://doi.org/10.1109/hpsr.2000.856660
https://doi.org/10.1109/JIOT.2015.2477039
https://doi.org/10.1109/TNET.2008.2002560
https://doi.org/10.1109/MNET.2014.6963801
https://doi.org/10.1145/1851476.1851590
https://doi.org/10.1145/2043164.2018466
http://dl.ifip.org/db/conf/im/im2013/TrestianMK13.pdf
https://doi.org/10.1109/WiMOB.2016.7763209
https://doi.org/10.1109/noms.2016.7502895
https://doi.org/10.1109/icccn.2016.7568565
https://doi.org/10.1109/WCNC.2016.7564652
https://doi.org/10.1109/ICCW.2016.7503760

4736 Sun et al.: Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

[14] Lee, GM, "Data Traffic Model in Machine to Machine Communications over 5G Network
Slicing," in Proc. of the International Conference on Developments in eSystems Engineering
(DeSE 2016), Liverpool, September 2016. Article (CrossRef Link)

[15] A. A. Chandio, N. Tziritas, and C.-Z. Xu, "Big-data processing techniques and their challenges in
transport domain," ZTE Communications, vol. 13, no. 1, pp. 50-59, Mar. 2015.
Article (CrossRef Link)

[16] R. Cibin, K. P. Sudheer, I. Chaubey, "Sensitivity and identifiability of stream flow generation
parameters of the SWAT model,” Hydrological Process., vol. 24, no. 9, pp. 1133-1148, Apr.
2010. Article (CrossRef Link)

[17] Anjali P P, Binu A. "Network Traffic Analysis: Hadoop Pig vs Typical MapReduce," Computer
Science & Information Technology, 2013. Article (CrossRef Link)

[18] Open Networking Foundation, OpenFlow Switch Specification Version 1.1.0 [White paper] Dec.
2011. Article (CrossRef Link)

[19] Smith B L, Williams B M, Oswald R K., ''Comparison of parametric and nonparametric models
for traffic flow forecasting,'' Elsevier Transportation Research Part C: Emerging Technologies,
vol. 10, no. 4, pp. 303–321, Aug. 2002. Article (CrossRef Link)

[20] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, ''Network traffic classification
using correlation information,'' IEEE Trans. Parallel Distribution System, vol. 24, no. 1, pp.
104–117, Jan. 2013. Article (CrossRef Link)

[21] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification., New York, NY, USA: Wiley,
2012. Article (CrossRef Link)

[21] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. New York, NY, USA:
Pearson Education Inc., 2006. Article (CrossRef Link)

[22] Z. Zheng and D. Su, ''Short-term traffic volume forecasting: A k-nearest neighbor approach
enhanced by constrained linearly sewing principle component algorithm,'' Elsevier
Transportation Research Part C: Emerging Technologies, vol. 43, pp. 143–157, Jun. 2014.
Article (CrossRef Link)

[24] Ranger C, Raghuraman R, Penmetsa A, et al., ''Evaluating MapReduce for multi-core and
multiprocessor systems,'' in Proc. of IEEE International Symposium on High PERFORMANCE
Computer Architecture, Scottsdale, AZ, USA, pp. 13–24, Feb. 2007. Article (CrossRef Link)

[25] C.-S. Li and M.-C. Chen, ''A data mining based approach for travel time prediction in freeway
with non-recurrent congestion,'' Neurocomputing, vol. 133, pp. 74–83, Jun. 2014.
Article (CrossRef Link)

Guolin Sun received his B.S., M.S. and Ph.D. degrees all in Comm. and Info.
System from the University of Electronic Sci.&Tech. of China (UESTC), Chengdu,
China, in 2000, 2003 and 2005 respectively. After Ph.D. graduation in 2005, Dr.
Guolin has got eight years industrial work experiences on wireless research and
development for LTE, Wi-Fi, Internet of Things (ZIGBEE and RFID, etc.),
Cognitive radio, Location and navigation. Before he join the School of Computer
Science and Engineering, University of Electronic Sci.&Tech. of China, as an
Associate Professor on Aug. 2012, he worked in Huawei Technologies Sweden. Dr.
Guolin Sun has filed over 30 patents, and published over 30 scientific conference
and journal papers, acts as TPC member of conferences. Currently, he serves as a
vice-chair of the 5G oriented cognitive radio SIG of the IEEE (Technical Committee
on Cognitive Networks (TCCN) of the IEEE Communication Society. His general
research interest is 5G/2020 oriented wireless network, such as software defined
networks, network function virtualization, wireless networks.

http://researchonline.ljmu.ac.uk/4063/
http://wwwen.zte.com.cn/endata/magazine/ztecommunications/2015/1/articles/201504/t20150401_432746.html
https://doi.org/10.1002/hyp.7568
https://arxiv.org/abs/1312.5469
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://doi.org/10.1016/S0968-090X(02)00009-8
https://doi.org/10.1109/TPDS.2012.98
http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf
https://bayanbox.ir/view/2627688347011855619/IntroductiontoDataMing.pdf
https://doi.org/10.1016/j.trc.2014.02.009
https://doi.org/10.1109/hpca.2007.346181
https://doi.org/10.1016/j.neucom.2013.11.029

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4737

Bruce Mareri received his BSc in Software Engineering from Kenyatta
University, Nairobi Kenya. He got his Certification in Integrated Mobile
Telecommunications Technology from the Emobilis Mobile Academy, Nairobi,
Kenya, in 2010. He is currently pursuing his MS in the Computer Science in
University of Electronic Science and Technology of China (UESTC), Chengdu,
China. His interests include Software Defined Networks, Future Networks and Ultra
low latency 5G networks.

Guisong Liu received his B.S. degree in Mechanics from the Xi’an Jiao Tong
University, Xi’an, China, in 1995, M.S. degree in Automatics and Ph.D. degree in
Computer Science both from the University of Electronic Science and Technology
of China (UESTC), Chengdu, China, in 2000 and 2007 respectively. Now, he is an
associated professor in the School of Computer Science and Engineering, UESTC.
His research interests include cloud computing, big data, and computational
intelligence.

Xiufen Fang received his B.S. degree and M.S. degree in Department of Applied
Mathematics both from the University of Electronic Science and Technology of
China, Chengdu, China, in 1995 and 2001, respectively. She was a visiting scholar
at Northern Illinois University (NIU) during March to September in 2012. Now, she
is an associate professor in the School of Mathematical Sciences, University of
Electronic Science and Technology of China. Her research interests include big
data, neural networks and scientific computing.

Wei Jiang received his Ph.D degree from Beijing University of Posts and
Telecommunications (BUPT) in 2008. Since Mar. 2008, he has been worked 4 years
in Central Research Institute of Huawei Technologies, in the field of wireless
communications and 3GPP standardization. In Sept. 2012, he joined the Institute of
Digital Signal Processing, University of Duisburg-Essen, Germany, where he was a
Postdoctoral researcher and worked for EU FP7 ABSOLUTE project and H2020
5G-PPP COHERENT project. Since Oct. 2015, he joined the Intelligent Networking
Group, German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,
Germany, as a senior researcher and works for H2020 5G-PPP SELFNET project.
Meanwhile, he also works for the Department of Electrical and Information
Technology (EIT), Technische University (TU) Kaiserslautern, Germany, as a
senior lecturer. He served as a vice Chair of IEEE TCCN special interest group
(SIG) “Cognitive Radio in 5G”. He is the author of more than 30 papers in top
international journals and conference proceedings, and has 27 patent applications in
wireless communications, most of which have already been authorized in China,
Europe, United States or Japan. He wrote a chapter “From OFDM to FBMC:
Principles and Comparisons” for the book “Signal Processing for 5G: Algorithms
and Implementations” (Wiley, 2016). His present research interests are in digital
signal processing, multi-antenna technology, cooperative communications, 5G, and
machine learning.

