• Title/Summary/Keyword: IoT Authentication

Search Result 194, Processing Time 0.029 seconds

Lightweight IPsec protocol for IoT communication environments (IoT 통신 환경을 위한 경량 IPsec 프로토콜 연구)

  • Song, In-A;Oh, Jeong-Hyeon;Lee, Doo-Won;Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Internet of Things architecture connected to the Internet is a technology. However, Many paper research for the lightweight Protocol of IoT Environment. In these Paper excluded secure problem about protocol. So Light weight Protocol has weakness of secure in IoT environment. All of IoT devices need encryption algorithm and authentication message code for certain level of security. However, IoT environment is difficult to using existing security technology. For this reason, Studies for Lightweight IPsec is essential in IoT environment. For Study of Lightweight IPsec, We analyze existing protocols such as IPsec, 6LoWPAN for IEEE 802.15.4 layer and Lightweight IPsec based 6LoWPAN. The result is to be obtained for the lightweight IPsec protocols for IoT environment. This protocol can compatible with Internet network.

IoT service and Research for Field of medicine application (IoT 서비스와 의료분야 적용에 관한 연구)

  • Na, Chan-kook;Park, Yune-soo;Kim, Wooseond;Lee, Bok-gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.453-456
    • /
    • 2016
  • Recently, IoT technologies attract much attenction in medical area. Previous medical IoT had focused mainly on chronological diseases or fitness for particular users. Contrarily, medical use of the IoT technologies is now extended for medical institutes and hospitals to care intensively in-house patients, which requires typically more strict and reliable data delivery and security, authentication and authorization. This study defines scenario of the medical IoT for the intensive care and proposes an architecture of the medical IoT services. We implement a testbed using commerical sensors and Arduino board together with a Web-based platform. Experiment results on the testbed show that our approach can be feasible for the medical system in terms of latency and accuracy in medical data delivery.

  • PDF

Lightweight DTLS Message Authentication Based on a Hash Tree (해시 트리 기반의 경량화된 DTLS 메시지 인증)

  • Lee, Boo-Hyung;Lee, Sung-Bum;Moon, Ji-Yeon;Lee, Jong-Hyouk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1969-1975
    • /
    • 2015
  • The Internet of Things (IoT), in which resource constrained devices communicate with each other, requires a lightweight security protocol. In this paper, we propose a new message authentication scheme using a hash tree for lightweight message authentication in the Datagram Transport Layer Security (DTLS) protocol. The proposed scheme provides lightweight secure operations compared with those of the DTLS protocol. Besides, it provides more suitable performance than the DTLS protocol for an IoT environment, thanks to the reduced use of message authentication code.

The Hardware Design of Integrated Security Core for IoT Devices (사물인터넷 기기를 위한 통합 보안 코어의 하드웨어 설계)

  • Gookyi, Dennis A.N.;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.584-586
    • /
    • 2017
  • In this paper we provide a unified crypto core that integrates lightweight symmetric cryptography and authentication. The crypto core implements a unified 128 bit key architecture of PRESENT encryption algorithm and a new lightweight encryption algorithm. The crypto core also consist of an authentication unit which neglects the use of hashing algorithms. Four algorithms are used for authentication which come from the Hopper-Blum (HB) and Hopper-Blum-Munilla-Penado (HB-MP) family of lightweight authentication algorithms: HB, HB+, HB-MP and HB-MP+. A unified architecture of these algorithms is implemented in this paper. The unified cryptosystem is designed using Verilog HDL, simulated with Modelsim SE and synthesized with Xilinx Design Suite 14.3. The crypto core synthesized to 1130 slices at 189Mhz frequency on Spartan6 FPGA device.

  • PDF

Token-Based IoT Access Control Using Distributed Ledger (분산 원장을 이용한 토큰 기반 사물 인터넷 접근 제어 기술)

  • Park, Hwan;Kim, Mi-sun;Seo, Jae-hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.377-391
    • /
    • 2019
  • Recently, system studies using tokens and block chains for authentication, access control, etc in IoT environment have been going on at home and abroad. However, existing token-based systems are not suitable for IoT environments in terms of security, reliability, and scalability because they have centralized characteristics. In addition, the system using the block chain has to overload the IoT device because it has to repeatedly perform the calculation of the hash et to hold the block chain and store all the blocks. In this paper, we intend to manage the access rights through tokens for proper access control in the IoT. In addition, we apply the Tangle to configure the P2P distributed ledger network environment to solve the problem of the centralized structure and to manage the token. The authentication process and the access right grant process are performed to issue a token and share a transaction for issuing the token so that all the nodes can verify the validity of the token. And we intent to reduce the access control process by reducing the repeated authentication process and the access authorization process by reusing the already issued token.

Analysis of IoT Open-Platform Cryptographic Technology and Security Requirements (IoT 오픈 플랫폼 암호기술 현황 및 보안 요구사항 분석)

  • Choi, Jung-In;Oh, Yoon-Seok;Kim, Do-won;Choi, Eun Young;Seo, Seung-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.7
    • /
    • pp.183-194
    • /
    • 2018
  • With the rapid development of IoT(Internet of Things) technology, various convenient services such as smart home and smart city have been realized. However, IoT devices in unmanned environments are exposed to various security threats including eavesdropping and data forgery, information leakage due to unauthorized access. To build a secure IoT environment, it is necessary to use proper cryptographic technologies to IoT devices. But, it is impossible to apply the technologies applied in the existing IT environment, due to the limited resources of the IoT devices. In this paper, we survey the classification of IoT devices according to the performance and analyze the security requirements for IoT devices. Also we survey and analyze the use of cryptographic technologies in the current status of IoT open standard platform such as AllJoyn, oneM2M, IoTivity. Based on the research of cryptographic usage, we examine whether each platform satisfies security requirements. Each IoT open platform provides cryptographic technology for supporting security services such as confidentiality, integrity, authentication an authorization. However, resource constrained IoT devices such as blood pressure monitoring sensors are difficult to apply existing cryptographic techniques. Thus, it is necessary to study cryptographic technologies for power-limited and resource constrained IoT devices in unattended environments.

A Survey of Trust Management in WSNs, Internet of Things and Future Internet

  • Chang, Kai-Di;Chen, Jiann-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.5-23
    • /
    • 2012
  • Nowadays, most researchers and manufacturers always pay attention on wireless sensor networks (WSNs) due to its potential applications in many regions such as military, industrial and civilian areas. WSNs are the basic components of Internet of Things (IoT) and the key to machine-to-machine communications and the future Internet. Also, the security is an essential element for deploying WSNs. Recently the concept of trust-based mechanism was proposed in WSNs such as traditional cryptographic and authentication mechanisms. However, there is lack a survey on trust management for WSNs, IoT even future Internet. In this paper, we discuss the concept and potential application areas of trust management for WSNs and IoT worlds. Furthermore, we survey different trust management issues (i.e., cluster, aggregation, reputation). Finally, future research directions with respect to trust management in WSNs and future IoT world are provided. We give not only simple WSNs for IoT environments but also a simulated bootstrap platform to provide the discussion of open challenges and solutions for deploying IoT in Future Internet.

Exploring the dynamic knowledge structure of studies on the Internet of things: Keyword analysis

  • Yoon, Young Seog;Zo, Hangjung;Choi, Munkee;Lee, Donghyun;Lee, Hyun-woo
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.745-758
    • /
    • 2018
  • A wide range of studies in various disciplines has focused on the Internet of Things (IoT) and cyber-physical systems (CPS). However, it is necessary to summarize the current status and to establish future directions because each study has its own individual goals independent of the completion of all IoT applications. The absence of a comprehensive understanding of IoT and CPS has disrupted an efficient resource allocation. To assess changes in the knowledge structure and emerging technologies, this study explores the dynamic research trends in IoT by analyzing bibliographic data. We retrieved 54,237 keywords in 12,600 IoT studies from the Scopus database, and conducted keyword frequency, co-occurrence, and growth-rate analyses. The analysis results reveal how IoT technologies have been developed and how they are connected to each other. We also show that such technologies have diverged and converged simultaneously, and that the emerging keywords of trust, smart home, cloud, authentication, context-aware, and big data have been extracted. We also unveil that the CPS is directly involved in network, security, management, cloud, big data, system, industry, architecture, and the Internet.

Research on Secure IoT Lightweight Protocols (사물인터넷용 경량 프로토콜 비교 연구)

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The use of Internet of Things(IoT) in smart cities and smart homes is essential. The security of the sensor nodes, which are the core of the IoT, is weak and hacking attacks are severe enough to have a fatal impact on real life. This research is conducted to improve the security of the Internet of Things by developing a lightweight secure communication protocol for the Internet of Things, and to build a safe Internet of Things environment suitable for the era of the 4th Industrial Revolution. It contributes to building a safe and convenient smart city and smart home by proposing key management and identifier development to increase the confidentiality of communication and the establishment of an Internet authentication system.

A Dual Security Technique based on Beacon (비콘 기반의 이중 보안 기법)

  • Park, Sang-Min;Kim, Chul-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.311-317
    • /
    • 2016
  • Many services have been developed that are based on smart devices, and security between devices is emphasized. A beacon on the current IoT(Internet of Things) services has been utilized in the commercial field and is being applied to the services of the home IoT. On the other hand, the beacon is weak to security using Bluetooth-based services. Therefore, it is important to strengthen the security of the beacon. This paper proposes a dual security technique that can enhance the security of beacon-based services. The dual security architecture and security process is proposed based on beacon and authentication service. In addition, mobile application was developed and validated based on the beacon for proving the suitability of the proposed technique. The experimental method for verification are the authentication failure case, such as 1st authentication fail, and authentication success case, such as 1st authentication success and 2nd authentication success. The components of the verification experiments consists of two beacons (matched with Beacon ID, mismatched with Beacon ID), one mobile device and authentication application. This was tested to verify the compatibility of the dual security architecture and 1st/2nd authentication process.