• Title/Summary/Keyword: IoT 장치

Search Result 418, Processing Time 0.026 seconds

Efficient Authentication Establishment Scheme between IoT Device based on Pascal Triangle Theory (파스칼 삼각 이론 기반의 IoT 장치간 효율적인 인증 설립 기법)

  • Han, Kun-Hee;Jeong, Yoon-Su
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.15-21
    • /
    • 2017
  • Recently, users' interest in IoT related products is increasing as the 4th industrial revolution has become social. The types and functions of sensors used in IoT devices are becoming increasingly diverse, and mutual authentication technology of IoT devices is required. In this paper, we propose an efficient double signature authentication scheme using Pascal's triangle theory so that different types of IoT devices can operate smoothly with each other. The proposed scheme divides the authentication path between IoT devices into two (main path and auxiliary path) to guarantee authentication and integrity of the IoT device. In addition, the proposed scheme is suitable for IoT devices that require a small capacity because they generate keys so that additional encryption algorithms are unnecessary when authenticating IoT devices. As a result of the performance evaluation, the delay time of the IoT device is improved by 6.9% and the overhead is 11.1% lower than that of the existing technique. The throughput of IoT devices was improved by an average of 12.5% over the existing techniques.

An efficient access control techniques between different IoT devices in a cloud environment (클라우드 환경에서 서로 다른 IoT 장치간 효율적인 접근제어 기법)

  • Jeong, Yoon-Su;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.57-63
    • /
    • 2018
  • IoT devices are used in many areas to perform various roles and functions in a cloud environment. However, a method of access control that can stably control the IoT device has not been proposed yet. In this paper, we propose a hierarchical multi-level property access control scheme that can perform stable access of IoT devices used in a cluster environment. In order to facilitate the access of the IoT device, the proposed method not only provides the ID key (security token) unique to the IoT device by providing the IoT Hub, but also allows the IoT Hub to authenticate the X.509 certificate and the private key, So that the private key of the IoT device can not be seen outside the IoT device. As a result of the performance evaluation, the proposed method improved the authentication accuracy by 10.5% on average and the processing time by 14.3%. The overhead of IoT Hub according to the number of IoT attributes was 9.1% lower than the conventional method.

The Way of IoT Management Hub Connection for Convenient IoT Service (편리한 사물인터넷 서비스를 위한 IoT 관리 허브 연결 방법)

  • Kim, Sang-hyun;Kim, Young-don;Lee, Chang-seok;Lee, Dong-ho;Park, Hyun-ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2656-2664
    • /
    • 2015
  • IoT management hub has to request the WLAN AP list of the accessible areas in a place that is installed, or choose a specific WLAN AP you want to connect in order to be connected to the Internet. the specific method also is required to input the password when the security key was set. As that way, IoT management hub needs both the display device and the input device to see the list of WLAN AP and to input the security key. If the IoT management hub is consist of them, It is difficult to achieve the objective of the miniaturization and cost reduction. In this paper, we propose a method to connect to a WLAN AP network using a smart-phone without the display device and the input device.

A Key Management Technique Based on Topographic Information Considering IoT Information Errors in Cloud Environment (클라우드 환경에서 IoT 정보 오류를 고려한 지형 정보 기반의 키 관리 기법)

  • Jeong, Yoon-Su;Choi, Jeong-hee
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.233-238
    • /
    • 2020
  • In the cloud environment, IoT devices using sensors and wearable devices are being applied in various environments, and technologies that accurately determine the information generated by IoT devices are being actively studied. However, due to limitations in the IoT environment such as power and security, information generated by IoT devices is very weak, so financial damage and human casualties are increasing. To accurately collect and analyze IoT information, this paper proposes a topographic information-based key management technique that considers IoT information errors. The proposed technique allows IoT layout errors and groups topographic information into groups of dogs in order to secure connectivity of IoT devices in the event of arbitrary deployment of IoT devices in the cloud environment. In particular, each grouped terrain information is assigned random selected keys from the entire key pool, and the key of the terrain information contained in the IoT information and the probability-high key values are secured with the connectivity of the IoT device. In particular, the proposed technique can reduce information errors about IoT devices because the key of IoT terrain information is extracted by seed using probabilistic deep learning.

Different Heterogeneous IoT Data Management Techniques for IoT Cloud Environments (IoT 클라우드 환경을 위한 서로 다른 이기종의 IoT 데이터 관리 기법)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.15-21
    • /
    • 2020
  • Although IoT systems are used in a variety of heterogeneous environments as cloud environments develop, all IoT devices are not provided with reliable protocols and services. This paper proposes an IoT data management technique that can extend the IoT cloud environment to an n-layer multi-level structure so that information collected from different heterogeneous IoT devices can be efficiently sorted and processed. The proposed technique aims to classify and process IoT information by transmitting routing information and weight information through wireless data link data collected from heterogeneous IoT devices. The proposed technique not only delivers information classified from IoT devices to the corresponding routing path but also improves the efficiency of IoT data processing by assigning priority according to weight information. The IoT devices used in the proposed technique use each other's reliable protocols, and queries for other IoT devices locally through a local cloud composed of hierarchical structures have features that ensure scalability because they maintain a certain cost.y channels of IoT information in order to make the most of the multiple antenna technology.

A Privacy Approach Model for Multi-Access to IoT Users based on Society 5.0 (소사이어티 5.0 기반 IoT 사용자에 대한 다중 접근방식의 프라이버시 접근 모델)

  • Jeong, Yoon-Su;Yon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • Recently, research on Society 5.0 has been actively carried out in Japan. The Society 5.0 is used in various areas using IoT sensors. This paper proposes a privacy approach model of multiple approaches to IoT users based on Society 5.0. The proposed model used multiple methods of synchronizing important information of IoT devices with one another in the virtual environment. The proposed model improved the efficiency of IoT information by accumulating the weight of IoT information on a probability-based basis. Further, it improves the accuracy of IoT information by segmenting it so that attribute information is linked to IoT information. As a result of the performance evaluation, the efficiency of IoT devices has improved by an average of 5.6 percent, depending on the number of IoT devices and the number of IoT hub devices. Accuracy has improved by an average of 15.9% depending on information collection and processing.

Logistics Delivery Route Optimization Method Based on IoT Focus on IoT device and IoT platform (IoT를 기반으로 한 택배 배송 경로 최적화 방안 IoT 장치와 IoT 플랫폼을 중심으로)

  • Song, Ha-Yoon;Mo, Jun-Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.566-568
    • /
    • 2018
  • 최근 IoT 기술이 산업 전반에 걸쳐 적용되고 있다. 본 논문에서는 기존 택배 시스템에서 비효율적인 경로로 배송되는 문제점을 개선하기 위해 택배 시스템에 IoT 기술을 적용하여 경로 최적화를 도모하며 IoT 장치와 IoT 플랫폼을 중심으로 문제 해결 솔루션을 제시한다.

Comparison of encryption algorithm performance between low-spec IoT devices (저 사양 IoT 장치간의 암호화 알고리즘 성능 비교)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.79-85
    • /
    • 2022
  • Internet of Things (IoT) connects devices with various platforms, computing power, and functions. Due to the diversity of networks and the ubiquity of IoT devices, demands for security and privacy are increasing. Therefore, cryptographic mechanisms must be strong enough to meet these increased requirements, while at the same time effective enough to be implemented in devices with long-range specifications. In this paper, we present the performance and memory limitations of modern cryptographic primitives and schemes for different types of devices that can be used in IoT. In addition, detailed performance evaluation of the performance of the most commonly used encryption algorithms in low-spec devices frequently used in IoT networks is performed. To provide data protection, the binary ring uses encryption asymmetric fully homomorphic encryption and symmetric encryption AES 128-bit. As a result of the experiment, it can be seen that the IoT device had sufficient performance to implement a symmetric encryption, but the performance deteriorated in the asymmetric encryption implementation.

Development of IoT Home Gateway Environment based on ACOME using Open Source Hardware (오픈소스 하드웨어를 활용한 ACOME 기반의 IoT 홈 게이트웨이 환경 개발)

  • Kim, Seong-Min;Choi, Hoan-Suk;Rhee, Woo-Seop
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.296-304
    • /
    • 2016
  • Recently in domestic market, the telecommunication and appliance companies actively provide IoT home service through their dedicated smart device and communication network. But because their service should use only their own devices and be payed by monthly, it does not satisfy user's needs. So, users want device and service environment that can be easily configured according to user needs. Therefore, in this paper, we propose IoT home service environment architecture and ACOME(Auto-Configuration of MQTT and REST) mechanism. The proposed architecture consists of IoT platform and IoT home gateway. And the ACOME provides the automatic registration using DPWS function and interface construction using MQTT. This implements as a library for open-source hardware such as Arduino that is easy to get on the market. So the user easy to make own IoT device. Finally, we provide performance evaluation about service and device discovery between ACOME and DPWS.

IP-Based Heterogeneous Network Interface Gateway for IoT Big Data Collection (IoT 빅데이터 수집을 위한 IP기반 이기종 네트워크 인터페이스 연동 게이트웨이)

  • Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.173-178
    • /
    • 2019
  • Recently, the types and amount of data generated, collected, and measured in IoT such as smart home, security, and factory are increasing. The technologies for IoT service include sensor devices to measure desired data, embedded software to control the devices such as signal processing, wireless network protocol to transmit and receive the measured data, and big data and AI-based analysis. In this paper, we focused on developing a gateway for interfacing heterogeneous sensor network protocols that are used in various IoT devices and propose a heterogeneous network interface IoT gateway. We utilized a OpenWrt-based wireless routers and used 6LoWAN stack for IP-based communication via BLE and IEEE 802.15.4 adapters. We developed a software to convert Z-Wave and LoRa packets into IP packet using our Python-based middleware. We expect the IoT gateway to be used as an effective device for collecting IoT big data.