• 제목/요약/키워드: Inverter-fed

검색결과 424건 처리시간 0.037초

Performance of Double Fed Induction Machine at Sub- and Super-Synchronous Speed in Wind Energy Conversion System

  • Eskander, Mona N.;Saleh, Mahmoud A.;El-Hagry, Mohsen M.T.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.575-581
    • /
    • 2009
  • In this paper two modes of operating a wound rotor induction machine as a generator at sub-and super-synchronous speeds in wind energy conversion systems are investigated. In the first mode, known as double fed induction generator (DFIG), the rotor circuit is fed from the ac mains via a controlled rectifier and a forced commutated inverter. Adjusting the applied rotor voltage magnitude and phase leads to machine operation as a generator at sub-synchronous speeds. In the second mode, the machine is operated in a slip recovery scheme where the slip energy is fed back to the ac mains via a rectifier and line commutated inverter. This mode is described as double output induction generator (DOIG) leading to increase the efficiency of the wind-to electrical energy conversion system. Simulated results of both modes are presented. Experimental verification of the simulated results are presented for the DOIG mode of operation, showing larger amount of power captured and better power factor when compared to conventional induction generators.

전압형 PWM 인버터에서의 새로운 데드 타임 보상 기법 (New Dead Time Compensation Method in Voltage-Fed PWM Inverter)

  • 류호선;김봉석;이주현;임익헌;황선환;김장목
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.395-403
    • /
    • 2006
  • 본 논문에서는 전압형 PWM 인버터에서의 새로운 데드 타임 보상 기법을 제안하였다. 전압형 PMW 인버터의 경우 데드 타임 영향과 스위칭 소자의 비선형적인 특성에 의해 전압 왜곡이 발생한다. 특히, 전압 왜곡은 정지 좌표계 상전류에 5차와 7차, 그리고 동기 좌표계 상전류에는 6차 고조파를 발생시킨다. 그 결과 d축 동기 PI 전류 제어기의 적분기 출력은 인버터 기본파 주파수의 6배에 해당하는 맥동을 가지고 있다. 본 논문에서는 d축 전류 제어기의 적분기 출력 신호를 데드 타임 보상을 위한 제어 신호로 사용하였다. 제안된 방법은 실험과 시뮬레이션을 통해 타당성을 검증하였다.

Prospects for the use of Multiphase Inverter-fed Asynchronous Drives in the Field of Traction Systems of Railway Vehicles

  • Brazhnikov, Andrey V.;Belozerov, Ilya R.
    • International Journal of Railway
    • /
    • 제5권1호
    • /
    • pp.38-47
    • /
    • 2012
  • At present among the most important problems in the field of traction systems of railway vehicles are the following: 1) the minimization of the mass-and-overall dimensions of the drive systems; 2) the increase of the drive systems reliability and obtaining their higher fault-tolerance abilities; 3) the minimization of the motion speed pulsations and its oscillations, etc. The results of the researches received by the authors of this paper show that the use of the multiphase (i.e. having the number of phases more than four) inverter-fed induction motors in these traction systems is the most effective way of solving the above mentioned problems. In this case the motion speed oscillations can be decreased only by the increase of the drive phase number without any change in the inverter control algorithm. In addition, the application of some non-traditional control methods in the multiphase asynchronous traction drive system of a railway vehicle allows to decrease the mass-and-overall dimensions of the system and to improve its reliability and some other technical-and economic characteristics.

Current-fed Push-Pull type high frequency resonant inverter for wax-sealing

  • Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Cyun;Kim, Min-Huei
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2000년도 학술대회논문집
    • /
    • pp.225-230
    • /
    • 2000
  • This paper describes a double-ended current fed push-pull type high frequency resonant inverter used as the power supply for wax-sealing. The proposed inverter can realize ZVS operation by using resonant capacitor to ZVS capacitor and has some merits not only reduction of switch current distribution but also extension of load range compare to the conventional single-ended current fed push-pull type high frequency resonant inverter. This analysis of proposed circuit uses normalized parameter ad characteristic estimation which is needed in each step before design is generally described according to normalized frequency($\mu$), normalized resistance(λ) and parameters. It is also presented as an example of method of the circuit design based on estimation analysis values from theoretical analysis. The theoretical analysis is proved through experiment and this circuit shows that it can be used practically as the power supply system for wax-sealing and DC-DC converter.

  • PDF

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Rotor Fault Detection System for Inverter Driven Induction Motors using Currents Signals and an Encoder

  • Kim, Nam-Hun
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.271-277
    • /
    • 2007
  • In this paper, an induction motor rotor fault diagnosis system using current signals, which are measured using the axis-transformation method is presented. Inverter-fed motor drives, unlike line-driven motor drives, have stator currents which are rich in harmonics and therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, an encoder and additional hardware. Therefore, the proposed axis-transformation method is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation, using the Park transformation, is compared with the results obtained from the FFT(Fast Fourier Transform).

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

Resonance Suppression using Sensorless Control of Dual SPMSMs Fed by Single Inverter

  • Eom, Jae-Boo;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2376-2384
    • /
    • 2018
  • To reduce the size and cost of motor driving systems, several methods for driving multiple parallel-connected motors with a single inverter have been proposed. However, dual PMSMs driven by a single inverter, unlike induction motors, have a problem with instability due to system resonance caused by disturbances such as load imbalance and tolerances between two motors. To drive dual SPMSMs fed by a single inverter, this paper proposes an active damping algorithm to effectively suppress resonance by using one-sided sensorless speed control and position difference estimation. By deriving rotor position difference from d-q current differences between two motors, the proposed method is affected less by position difference estimation errors and is simpler than dual sensorless position estimation.

고주파 유도가열용 전원장치의 개발에 관한 연구 (A Study on Development of Power Supply for High Frequency Induction Heating)

  • 이봉섭
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.179-186
    • /
    • 2002
  • This paper proposed LC resonant current fed high frequency inverter for high frequency induction heating using leakage inductance of transformer and, its described operating principle. The analysis of circuit presented by using normalized parameter in considering leakage inductance of transformer and, discussed characteristic evaluation of inverter circuit in detail. The proposed inverter is operating ZVS to reduce turn-on and turn-off loss of switching devices so, raised an efficiency. And, the experimental apparatus was made on base characteristic evaluation of theoretical analysis to discuss possibility on high frequency source and confirmed a rightfulness theoretical analysis. A result of study, the proposed inverter is higher utilizing factor using on leakage inductance of transformer and show possibility, which is application on high frequency power system.

  • PDF

개선된 등가 파라미터를 이용한 인버터 구동 유도전동기의 축전류 해석에 관한 연구 (A Study on Analysis of Inverter-fed Induction Motor's Bearing Current using Improved Equivalent Ciruit Parameters)

  • 김병택;구대현;홍정표;권병일;전지훈
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.683-692
    • /
    • 2007
  • An inverter driven induction motor has more superior dynamic characteristic than sine wave driven induction motor. But it has a problem with shaft voltage and bearing current in drive-motor system. This paper presents the analysis of bearing current in inverter-fed induction motor. The proposed method is based on using numerical method (FEM) to derive parasitic parameters in motor. Using the electric field analysis with FEM, the stored energy in dielectric materials of the motor can be calculated and the parasitic capacitances are obtained. Then we compared the proposed method with a conventional method in variable frequency and load conditions. From the comparision of simulation and experiment result, we confirmed that the proposed method is valid.