• Title/Summary/Keyword: Inverter-fed

Search Result 424, Processing Time 0.024 seconds

High Frequency Model of Inverter-fed Induction Motor (인버터 구동 유도 전동기 고주파 모델링)

  • Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.795-797
    • /
    • 2001
  • Voltage varing Fate dv/dt which is applied to induction motor usually makes unnegligible leakage current and it flows through stator winding and motor frame. This kind of harmonic leakage current makes effect on power source and cuases electromagnetic trouble because the motor frame has earth. Therefore in this study, a high frequency induction motor model is developed and analyze the motor performance to explain the phenomena. Inverter model is also developed and is combined with the motel model to prepare the basis of the high frequency effects on inverter fed induction motor.

  • PDF

Direct Torque Control of Induction Motor Fed by a Three Level Inverter (3 레벨 인버터를 이용한 유도 전동기의 직접 토크 제어)

  • 박영민;이세현;윤재학;박영우;김남해;이교범;송중호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.386-389
    • /
    • 1999
  • In this paper a Direct Torque Control(DTC) scheme for PWM three level inverter-fed induction motor drives, is presented and discussed. In orde to deal with DTC scheme applied three level inverter, the selection of voltage vector is proposed to minimize switching frequency and torque ripple. The simulation results shows a validity of the control scheme.

  • PDF

A Study on Prediction of Conducted EMI In PWM inverter fed Induction Motor Drive System (PWM 인버터-유도전동기 구동시스템의 전도노이즈 예측에 관한 연구)

  • 이진환;안정준;원충연;김영석;최세완
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.367-372
    • /
    • 1999
  • In this paper, an inverter fed induction motor drive system is analyed in order to predict the conducted interference. High frequency model for inverter, motor and system parasitic components are proposed. High frequency component allows time and frequency domain analysis to be performed with standard PSpice tool. The overall high frequency component and model are verified by comparing simulation and experimental result.

  • PDF

Angle Control for SRCI Fed Induction Motor Drive (SRCI 구동 유도전동기 시스템의 Angle Control)

  • 김인동;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.854-861
    • /
    • 1988
  • The current source inverter-fed induction motor(CSIM) drive is widely used in industry because of its four quadrant operation, fuseless protection, fuseless protection, and ruggedness. the CSIM drive system, however, has shortcomins such as slow response and dynamic stability to load torque disturbance and reference speed change. Such a disadvantages can be compensated considerably by means of introducing additional angle angle control loop. The angle control method is dependent upon the inverter type. In this paper, simultaneus recovery and commutation inverter(SRCI) which is developed recently is considered.

  • PDF

Measuring machine parameters of inverter-fed induction motors for an accurate torque control (고정밀 토크제어를 위한 인버터 구동 유도전동기의 상수 측정)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.12-16
    • /
    • 2002
  • This paper deals with the measurement of machine parameters of inverter-fed induction motors for an accurate torque control applications such as machine tools and tension control machines. After discussing nonlinearities of both inverter and motor, this paper suggests appropriate compensation and measurement methods. The experimental results show the validity of the proposed method in the operating conditions.

  • PDF

Compact Wireless IPT System Using a Modified Voltage-fed Multi-resonant Class EF2 Inverter

  • Uddin, Mohammad Kamar;Mekhilef, Saad;Ramasamy, Gobbi
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.277-288
    • /
    • 2018
  • Wireless inductive power transfer (IPT) technology is used in many applications today. A compact and high-frequency primary side inverter is one of the most important parts of a WPT system. In this study, a modified class EF-type voltage-fed multi-resonant inverter has been proposed for WPT application at a frequency range of 85-100 kHz. Instead of an infinite input choke inductor, a resonant inductor is used to reduce loss and power density. The peak voltage stress across the MOSFET has been reduced to almost 60% from a class-E inverter using a passive clamping circuit. A simple yet effective design procedure has been presented to calculate the various component values of the proposed inverter. The overall system is simulated using MATLAB/SimPowerSystem to verify the theoretical concepts. A 500-W prototype was built and tested to validate the simulated results. The inverter exhibited 90% efficiency at nearly perfect alignment condition, and efficiency reduced gradually with the misalignment of WPT coils. The proposed inverter maintains zero-voltage switching (ZVS) during considerable load changes and possesses all the inherent advantages of class E-type inverters.

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

Compensation Scheme for Dead Time and Inverter Nonlinearity Insensitive to IPMSM Parameter Variations (IPMSM 파라미터 변화에 영향 받지 않는 데드타임 및 인버터 비선형성 보상기법)

  • Park, Dong-Min;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.213-221
    • /
    • 2012
  • In a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive, a dead time is inserted to prevent a breakdown of switching device caused by the short-circuit of DC link. This distorts the inverter output voltage resulting in a current distortion and torque ripple. In addition to the dead time, nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The voltage disturbance caused by the dead time and inverter nonlinearity directly influences on the inverter output performance, and it is known to be more severe at low speed. In this paper, a new compensation scheme for the dead time and inverter nonlinearity under the parameter variation is proposed for a PWM inverter-fed IPMSM drive. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments.

Optimal Harmonic Stepped Waveform Technique for Solar Fed Cascaded Multilevel Inverter

  • Alexander, S.Albert;Thathan, Manigandan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.261-270
    • /
    • 2015
  • In this paper, the Optimal Harmonic Stepped Waveform (OHSW) method is proposed in order to eliminate the selective harmonic orders available at the output of cascaded multilevel inverter (CMLI) fed by solar photovoltaic (SPV). This technique is used to solve the harmonic elimination equations based on stepped waveform analysis in order to obtain the optimal switching angles which in turn reduce the Total Harmonic Distortion (THD). The OHSW method considers the output voltage waveform as four equal symmetries in each half cycle. In the proposed method, a solar fed fifteen level cascaded multilevel is considered where the magnitude of six numbers of harmonic orders is reduced. A programmable pulse generator is developed to carry the switching angles directly to the semiconductor switches obtained as a result of OHSW analysis. Simulations are carried out in MATLAB/Simulink in which a separate model is developed for solar photovoltaic which serves as the input for cascaded multilevel inverter. A 3kWp solar plant with multilevel inverter system is implemented in hardware to show the effectiveness of the proposed system. Based on the observation the OHSW method provides the reduced THD thereby improving power quality in renewable energy applications.

Output Filter Design for Conducted EMI Reduction of PWM Inverter-Fed AC Motor Drive System (PWM 인버터 시스템에서의 전도노이즈 저감을 위한 출력필터 설계에 관한 연구)

  • 김이훈;박규현;원충연;김영석;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.546-555
    • /
    • 2001
  • In this paper filtering techniques to reduce the adverse effects of motor leads on high-frequency PWM inverter fed AC motor drives are presented. The filter was designed to keep the motor terminal from the cable surge impedance to reduce overvoltage reflections ringing and the dv/dt, di/dt, at the motor terminals. Specially the output filter is used to limit the rate of the inverter output voltage and reduce common mode noise to the motor, The performance of the output filter is evaluated through simulations and experiment on PWM inverter-fed AC motor drive. An experimental PWM drive system reduction of conducted EMI was implemented on an available TMS320C31 microprocessor control board Finally, experimental result shows inverter output filter reduces more common mode voltage than low pass filter also reduce overoltage and ringing at the motor terminal.

  • PDF