• Title/Summary/Keyword: Inverted pendulum robot

Search Result 99, Processing Time 0.027 seconds

Driving of Inverted Pendulum Robot Using Wheel Rolling Motion (바퀴구름운동을 고려한 역진자 로봇의 주행)

  • Lee, Jun-Ho;Park, Chi-Sung;Hwang, Jong-Myung;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

A Fuzzy Control of a 3-dimensional Inverted Pendulum Using a 3-axis Cartesian Robot

  • Shin, Ho-sun;chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.1-176
    • /
    • 2001
  • Conventional researches almost have been focused on the one dimensional inverted pendulum. Recently, Sprenger et al[2] have researched a two dimensional inverted pendulum Observing human's action to control an inverted pendulum, one can recognize that human uses a three dimensional metier including the up and down motion. In this paper, we propose a fuzzy logic controller(FLC) of a new three dimensional inverted pendulum system. We derive a dynamic equation of the mechanism including a 3-axis cartesian robot and a inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of a inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot ...

  • PDF

Biped Robot Control for Stable Walking (바이패드 로봇의 안정적인 거동을 위한 제어)

  • 김경대;박종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

A Study on the Stability of Dynamic Walking of a Humanoid Robot (휴머노이드 로봇의 동보행 안정도에 관한 연구)

  • Lee, Ji-Young;Cho, Jung-San;Lee, Sang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, we deal with the dynamic walking of a humanoid robot. In our method, the inverted pendulum model is used as a dynamic model for a humanoid robot in which the Zero Moment Point (ZMP) and COG constraints of the robot are analyzed by considering the motion of the robot as that of an inverted pendulum. The motion of a humanoid robot should be generated by considering the dynamics of the robot, which commonly requires a large amount of computation. If a robot walks from one position to another while keeping the ZMP in the stable region, then the robot remains dynamically stable. The linear inverted pendulum model regards the whole robot as a point mass. It is simple, and relatively less computation is needed; however, it cannot model the whole dynamics of a humanoid robot. We propose a method for modeling a humanoid robot as an inverted pendulum system having 14 point masses. We also show that the dynamic stability of a humanoid robot can be determined more precisely by our method.

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

Time Delay Control of an Inverted Pendulum using Robot Manipulator (로봇 매니플레이터를 이용한 도립진자의 시간 지연 제어)

  • Chi, Jong-Hwan;Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3057-3059
    • /
    • 1999
  • The inverted pendulum is an unstable, nonlinear system exposed to disturbances and its system parameters change. This paper presents the Time Delay Control design of the inverted pendulum using robot minipulator. The results obtained from a simulations indicated a reference tracking of the system. This paper will implement, the time delay control of the inverted pendulum using a robot manipulator, It will be that the time delay can control the inverted pendulum using a manipulator.

  • PDF

Implementation of Educational Two-wheel Inverted Pendulum Robot using NXT Mindstorm (NXT Mindstorm을 이용한 교육용 이륜 도립진자 로봇 제작)

  • Jung, Bo Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, we propose a controller gain based on model based design and implement the two-wheel inverted pendulum type robot using NXT Lego and RobotC language. Two-wheel inverted pendulum robot consists of NXT mindstorm, servo DC motor with encoder, gyro sensor, and accelerometer sensor. We measurement wheel angle using bulit-in encoder and calculate wheel angle speed using moving average method. Gyro measures body angular velocity and accelerometer measures body pitch angle. We calculate body angle with complementary filter using gyro and accelerometer sensor. The control gain is a weighted value for wheel angle, wheel angular velocity, body pitch angle, and body pich angular velocity, respectively. We experiment and observe the effect of two-wheel inverted pendulum with respect to change of control gains.

Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII (밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII)

  • Lee, Hyung-Jik;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF

A Development of the Self-Standable Mobile Robot Based on a Wheeled Inverted Pendulum Mechanism (자기-기립 가능한 차륜형 역진자 기구 기반의 이동로봇 개발)

  • Lee, Se-Han;Kang, Jae-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • In this research a Self-Standable mobile Robot with standing arms based on an Wheeled Inverted Pendulum is developed. Almost existing mobile robots have wide planar shape that is statistically stable and it is sometimes hard for them to run or steer on a narrow road. A Wheeled Inverted Pendulum based mobile robot has vertical shape that is upright-running and easily steering on a narrow road. It, however, requires actively balancing control and never restores the shape once it falls down. This research develops a Self-Standable mobile robot which equips standing arms and is able to change its chassis' posture freely from planar to vertical shape or vice versa.

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.