• Title/Summary/Keyword: Inverted Pendulum System

Search Result 326, Processing Time 0.028 seconds

A Implementation of an Inverted Pendulum with Centrifugal Force using the NonLinear Sliding Mode Contrl (비선형 슬라이드 모드 제어를 적용한 원심력을 갖는 도립진자 제어기의 구현)

  • 황윤호;원태현;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.606-609
    • /
    • 1995
  • To stabilize a satellite, a spin stabilization method is used for attitude control. The spin stabilization uses the centrifugal force of a pendulum damper which is tilted long boom, to stabilize the unstable satellite. In this paper, an inverted pendulum system is implemented which is similar to the spin stabilization method. Study on the velocity of the rotation axis and the inverted pendulum's angle stability is shown. We designed a controller using a 32bit TMS320C31 DSP for the CPU and also performances by PLD control and Sliding Mode Control is compared.

  • PDF

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.

A study on Fuzzy-PID Control of a Straight Line Type Inverted Pendulum (직선형 도립 진자의 퍼지-PID 제어에 관한 연구)

  • Kim, J.M.;Lee, S.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.57-64
    • /
    • 1994
  • This paper proposes a fuzzy tuning PID controller for straight line type inverted pendulum. The conventional PID controller which is used widely in industrial field has fatal drawback on determining control gains for practical system. The proposed controller tunes the gains automatically based on fuzzy urle derived from the experience of expert operator. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method in terms of rising time, overshoot, and overall errors.

  • PDF

Stabilization Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 안정화 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Kim, Min-Jeong;So, Myung-Ok;Jin, Gang-Gyoo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.49-50
    • /
    • 2005
  • This paper presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are obtained by a real-coded genetic algorithm(RCGA) such that the given performances indices are minimized.

  • PDF

Implementation of a Fuzzy Control System for Two-Wheeled Inverted Pendulum Robot based on Artificial Neural Network (인공신경망에 기초한 이륜 역진자 로봇의 퍼지 제어시스템 구현)

  • Jeong, Geon-Wu;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • In this paper, a control system for two wheeled inverted pendulum robot is implemented to have more stable balancing capability than the conventional control system. Fuzzy control structure is chosen for the two wheeled inverted pendulum robot, and fuzzy membership function factors for the control system are obtained for 3 specified weights using a trial-and-error method. Next a neural network is employed to generate fuzzy membership function factors for more stable control performance when the weight is arbitrarily selected. Through some experiments, we find that the proposed fuzzy control system using the neural network is superior to the conventional fuzzy control system.

A partial feedback linearization control of inverted pendulum by using nonlinear additional input (비선형 추가입력을 이용한 도립 진자의 부분 궤환 선형화 제어기 설계)

  • Kim, Yong-Jun;Yoem, Dong-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.58-62
    • /
    • 2002
  • This paper proposes a new nonlinear controller to swing-up an inverted pendulum system mounted on a car. This controller considers not only the pendulum but also the displacement of the cart. A single-input multi-output system is considered to control the inverted pendulum by using partial feedback linearization and nonlinear additional input. The asymptotic stability of the system is shown by using Lyapunov function. The simulation results show effectiveness of the proposed controller.

  • PDF

The Control of Inverted Pendulum System Using Approximated Nonlinear Feedback Linearization (근사 비선형 궤환 선형화를 이용한 도립 진자 계통의 제어)

  • 이종용;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.372-384
    • /
    • 1993
  • The inverted pendulum system has interesting and challenging problems related to robotics and rocket attitude control view of both control theory and applications. Generally approximately linearized plant models are employed to control the system. In this paper a recently developed control theory based on differentiable manifold theory is used to control the inverted pendulum system which is typically nonlinear. First, the nonlinear model is transformed into the approximate feedback linearized system by nonlinear state feedback. Secondly, the linear controller is designed using the pole-placement method for the approximate feedback linearized plant model, the output of which are finally inverse-transformed to yield the control input to the actual system of the inverted pendulum. The proposed method is evaluated by the computer simulation to compare with the 3rd order linearization model.

  • PDF

Model Based Control System Design of Two Wheeled Inverted Pendulum Robot (이륜 도립진자 로봇의 모델 기반 제어 시스템 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • This paper proposes embedded System of two wheeled inverted pendulum robot designed by model based design method, using MATLAB/SIMULINK and LEGO NXT Mindstorms. At first, stability and performance of controller is verified through modeling and simulation. After that direct conversion from simulation model to C code is carried and effectiveness of controller is experimentally verified. Two wheeled inverted pendulum robot has basic function about autonomous balancing control using principle of inverted pedulum and it is also possible to arrive at destination. In this paper, state feedback controller designed by quadratic optimal control method is used. And quadratic optimal control uses state feedback control gain K to minimize performance index function J. Because it is easy to find gain, this control method can be used in the controller of two wheeled inverted pendulum robot. This proposed robot system is experimentally verified with following performances - balancing control, disturbance rejection, remote control, line following and obstacle avoidance.

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Position Control and Stabilization of Inverted Pendulum using the Evolution Strategies (진화전략을 이용한 도립진자의 안정화 및 위치제어)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.71-80
    • /
    • 1996
  • This paper presents stabilization and position control of the Inverted-Pendulum system with cart by using Evolution Strategies that is one of the Evolutionary Computation and is effective in searching real number. The control input of the Inverted-Pendulum is the element of chromosome corresponding to the divided space of Inverted-Pendulum state variable x, x, 0, 0 . In general, the larger the length of the chromosome is, the longer the time of evolution to search optimal solution is. So in this paper, we propose a scheme that reduce the state space by half by taking the method, that is, converting only the sign of the control input without obtaining separately for the symmetrical sections of the Inverted-Pendulum to improve the speed of Evolution, and improved the efficiency of the entire system in addition to the improvement of the chromosome's evolution time by carrying out the chromosome's evolutional process by two steps one of which is that cart is positioned near the control point and the other cart is positioned far from that point. We propose another method that is Neural Network-Evolution StrategiedNN-ES) Controller. We verify the effectiveness of the proposed control scheme by computer simulations.

  • PDF