• Title/Summary/Keyword: Inverted Pendulum System

Search Result 326, Processing Time 0.023 seconds

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

Control of an Inverted Pendulum System with a Solid-State Inertial Sensor (반도체형 관성 센서를 이용한 도립진자 제어)

  • Choi, Ho-Joon;Lee, Jun-Beom;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2061-2063
    • /
    • 2003
  • This paper presents a method to compensate the drift of solid-state inertial sensors for control applications. A solid-state gyroscope is evaluated via both theoretical and experimental analyses. From the analytical results, a heuristic compensation method for the drift of the gyroscope is proposed. Experimental results on inverted pendulum control show that the proposed method is feasible since compensated signals from the gyroscope are successfully used in the feedback loop to control the inverted pendulum system.

  • PDF

Stabilization of Inverted Pendulum Using Neural Network with Genetic Algorithm

  • Jin, Dan;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.425-428
    • /
    • 2003
  • In this paper, the stabilization of an inverted pendulum system is studied. Here, the PID control method is adopted to make the system stable. In order to adjust the PID gains, a three-layer neural network, which is based on the back propagation method, is used. Meanwhile, the time for training the neural network depends on the initial values of PID gains and connection weights. Hence, the genetic algorithm Is considered to shorten the time to find the desired values. Simulation results show the effectiveness of the proposed approach.

  • PDF

Composite Neural Networks for Controlling Semi-Linear Dynamical Systrms: Example from Inverted Pendulum Problem

  • Yamamoto, Yoshinobu;Anzai, Yuichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1129-1134
    • /
    • 1989
  • In this paper, we propose a neural network for learning to control semi-linear dynamical systems. The network is a composite system of four three-layer backpropagation subnetworks, and is able to control inverted pendulums better than systems based on modern control theory at least in some ranges of parameters. Three of the four subnetworks in our network system process angles, velocities, and positions of a moving inverted pendulum, respectively. The outputs from those three subnetworks are input to the remaining subnetwork that makes control decisions. Each of the four subnetworks learns connection weights independently by backpropagation algorithms. Teaching signals are given by the human operator. Also, input signals are generated by the human operator, but they are converted by preprocessors to actual input data for the three subnetworks except for the network for control decisions. The whole system is implemented on both of 16 bit personal computers and 32 bit workstations. First, we briefly provide the research background and the inverted pendulum problem itself, followed by the description of our composite neural network model. Next, some results from the simulation are given, which are subsequently compared with the results from a control system based on modern control theory. Then, some discussions and conclusion follow.

  • PDF

A Control of Inverted pendulum Using Genetic-Fuzzy Logic (유전자-퍼지 논리를 사용한 도립진자의 제어)

  • 이상훈;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.977-984
    • /
    • 2001
  • In this paper, Genetic-Fuzzy Algorithm for Inverted Pendulum is presented. This Algorithms is combine Fuzzy logic with the Genetic Algorithm. The Fuzzy Logic Controller is only designed to two inputs and one output. After Fuzzy control rules are determined, Genetic Algorithm is applied to tune the membership functions of these rules. To measure of performance of the designed Genetic-Fuzzy controller, Computer simulation is applied to Inverted Pendulum system. In the simulation, In the case of f[0.3, 0.3] Fuzzy controller is measured that maximum undershoot is $-5.0 \times 10^{-2}[rad]$, maximum undershoot is $3.92\times10^{-2}[rad]$ individually however, Designed algorithm is zero. The Steady state time is approximated that Fuzzy controller is 2.12[sec] and designed algorithm is 1.32[sec]. The result of simulation, Resigned algorithm is showed it's efficient and effectiveness for Inverted Pendulum system.

  • PDF

A Sliding Mode Control Scheme for Inverted Pendulum System (슬라이딩 모드 제어기법을 이용한 도립진자 시스템 제어)

  • Han, Sang-Wan;Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1020-1026
    • /
    • 2014
  • A problem of sliding mode control is chattering because of controle input signal included unknown disturbance and nonlinear input parameters. This paper presents a sliding mode controller design to inverted pendulum system. In this paper, a sliding mode control algorithm to reduce a chattering is proposed. The reduction of chattering is accomplished by smoothing function for nonlinear control input. In this method, the dynamic equations of the inverted pendulum is decoupled by considering nonlinear parameters and external disturbances. Therefore, this study is applied to obtain switching control inputs for sliding mode controller. The proposed technique is tested to the control of inverted pendulum through computer simulations. The result shown reduced chattering in control input.

Balancing and Position Control of Inverted Pendulum System Using Hierarchical Adaptive Fuzzy Controller (계층적 적응 퍼지제어기법을 사용한 역진자시스템의 안정화 및 위치제어)

  • Kim, Yong-Tae;Lee, Hee-Jin;Kim, Dong-Yon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.164-167
    • /
    • 2004
  • In the paper is proposed a hierarchical adaptive fuzzy controller for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the hierarchical adaptive fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing, a forced disturbance generator which emulates heuristic control strategy, and a supervisory decision maker for the arbitration of two control objectives It is proved that all the signals in the overall system are bounded. Simulation results are given to verify the proposed adapt i ye fuzzy control method.

  • PDF

Control of Flexible Joint Cart based Inverted Pendulum using LQR and Fuzzy Logic System (LQR-퍼지논리제어기에 의한 2중 차량 구조 역진자 시스템의 제어)

  • Xu, Yue;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.268-274
    • /
    • 2013
  • Any new method for controlling a nonlinear system has widely been reported. An inverted pendulum system has typically been used as a target system for demonstrating its usefulness. In this paper, we propose an algorithm to control a flexible joint cart based inverted pendulum system. Two carts are connected with a spring and one is a driving cart and the other is no driving cart with a pole. We here present a system modeling and a good fuzzy logic based control algorithm. We also introduce LQR (Linar Quadratic Regulator) technique for reducing the number of control variables. By using this technique, the number of input variables for a fuzzy logic controller is become only two not six. So the computational complexity is largely reduced. Moreover, a two-input fuzzy logic controller has a control rule table with a skew-symmetric property. And it will lead the design of a single-input fuzzy logic controller. In order to demonstrate the usefulness of the proposed method and prove the superiority of the proposed method, some computer simulations are presented.

Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement (등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어)

  • Kwon, Young-Kuk;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.

Intelligent Balancing Control of Inverted Pendulum on a ROBOKER Arm Using Visual Information (영상 정보를 이용한 ROBOKER 팔 위의 역진자 시스템의 지능 밸런싱 제어 구현)

  • Kim, Jeong-Seop;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.595-601
    • /
    • 2011
  • This paper presents balancing control of inverted pendulum on the ROBOKER arm using visual information. The angle of the inverted pendulum placed on the robot arm is detected by a stereo camera and the detected angle is used as a feedback and tracking error for the controller. Thus, the overall closed loop forms a visual servoing control task. To improve control performance, neural network is introduced to compensate for uncertainties. The learning algorithm of radial basis function(RBF) network is performed by the digital signal controller which is designed to calculate floating format data and embedded on a field programmable gate array(FPGA) chip. Experimental studies are conducted to confirm the performance of the overall system implementation.