• Title/Summary/Keyword: Inverted Mobile robot system

Search Result 17, Processing Time 0.022 seconds

Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII (밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII)

  • Lee, Hyung-Jik;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Real Time Pose Control for the Horizontal Maintenance and driving of Mobile Inverted Pendulum (모바일 역진자의 수평유지와 주행을 위한 실시간 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.157-163
    • /
    • 2011
  • In this paper, configuration control for the Horizontal Maintenance and driving of the mobile inverted pendulum robot has been studied using ARS(Attitude Refrence System). The inverted pendulum technique is getting attention and there have been many researches on the seg-way since the US. Using its 2 freedom, a mobile inverted pendulum robot can move in various modes and Our robot performs goal reaching ARS. Mobile inverted pendulum robot fall down to the forward or reverse direction to converge to the stable point. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this paper we present a two wheel robot system for an autonomous mobile robot. This paper realized the robot control method which is much simpler but able to get desired performance by using the IMU and PID control.

The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor (자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.703-708
    • /
    • 2012
  • This paper proposes the improvement of control performance in the wheeled inverted mobile robot system. and describes the modeling of a wheeled inverted pendulum type mobile robot driven by two different wheels for the position and velocity control. The system is sensitive on the parameter variation, therefore control signal should change to maintain desired state of the system in every instant. we designed proportional-plus-integral controller for our system, After linearization, the system was still unstable, throughout stability analysis of the system, we designed the values of the gains of a proportional-plus-integral controller. From the experimental results, we can find that the performance of the proposed method is better than of the manual tuning method.

Neural Network Control of a Two Wheeled Mobile Inverted Pendulum System with Two Arms (두 팔 달린 두 바퀴 형태의 모바일 역진자 시스템의 신경회로망 제어)

  • Noh, Jin-Seok;Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.652-658
    • /
    • 2010
  • This paper presents the implementation and control of a two wheeled mobile robot(TWMR) based on a balancing mechanism. The TWMR is a mobile inverted pendulum structure that combines an inverted pendulum system and a mobile robot system with two arms instead of a rod. To improve robustness due to disturbances, the radial basis function (RBF) network is used to control an angle and a position at the same time. The reference compensation technique(RCT) is used as a neural control method. Experimental studies are conducted to demonstrate performance of neural network controllers. The robot are implemented with the remote control capability.

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement (등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어)

  • Kwon, Young-Kuk;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.

Balancing Control of a Two Wheeled Mobile Robot System (두 바퀴로 구동하는 이동로봇 시스템의 균형 제어)

  • Lee, Hyung-Jik;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • This paper presents implementation and control of a two wheeled mobile robot system which consists of two systems, an inverted pendulum system and a mobile robot system. Control purpose is to regulate its balancing and navigation. The balancing robot has advantages of one point turning and robust balancing against disturbances from the ground. Simulation studies of local and global control methods are performed. Since the robot is implemented to have a symmetrical structure, simple linear control algorithms are used for balancing and navigation. Low cost sensors such as gyro and tilt sensor are fused together to detect the inclined angle. Experimental studies of following desired circular trajectory are conducted.

A Control of Mobile Inverted Pendulum using Single Accelerometer (단일 가속도 센서에 의한 모바일 역진자 제어)

  • Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2010
  • This paper proposes a single accelerometer sensor control algorithm to mobile inverted pendulum, generally called 'Segway', and evaluates the performance of this system comparing to the conventional ones. The commercialized 'Prototype Segway-PT' is initially considered as a next-generation transport vehicle. However, this robot is operated by three gyroscopes and two accelerometers to control the posture and speed, and it requires the complex signal processing for fusing the two sets of data. As the result of this, the growth rate of market size of 'Segway' is slow because of its high price mainly. In this paper, the mobile inverted pendulum is operated by a single accelerometer to simplify the control system to lower the price. Low pass filter is one of the good sensors to reducing the variation of an accelerometer, but it has time delay. This time delay disturbs real-time mobile inverted pendulum control. Like this, other various algorithms are used for this system, but each one has its own weak point. So this paper proposes a new filtering method, median filter and EKF. Median filter is used to image processing to reject impulse elements like salt and pepper noise. As the major performance evaluation parameter for the accelerometer, the high-frequency to low frequency ratio from FFT (Fast Fourier Transform) is used. Effectiveness of the proposed algorithms has been verified through the real experiments and the results are demonstrated.