• Title/Summary/Keyword: Inverse-kinematics

Search Result 358, Processing Time 0.037 seconds

Analysis of the Inverse Kinematics Method for Robot Arm Controlled by Amateur Users (비전문가를 위한 로봇 팔 역기구학의 해석)

  • Lee, Gyeong-Mun;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.259-260
    • /
    • 2014
  • IT 기술의 발달로 인해 로봇공학은 전문가의 영역에서 비전문가의 영역까지 두루 사용되고 있다. 그러나 현재 존재하는 소프트웨어는 여전히 높은 진입 장벽을 가지고 있다. 비전문가가 실질적으로 참고자료가 많이 부족하기 때문에 로봇 제어가 쉽지 않다. 본 논문에서는 5 자유도를 가진 로봇 팔을 움직이게 할 때 사용하는 기존의 역기구학(Inverse Kinematics)을 활용하여 기존 방법의 난도보다 직관적인 방법을 제시하여 비전문가들에게 로봇에 대한 높은 접근성을 제시한다.

  • PDF

Inverse Kinematics based Posture Generation Method for Sports Climbing (스포츠클라이밍을 위한 역운동학 기반 자세 및 동작 생성 기법)

  • Shin, Kyucheol;Son, Jonghee;Kim, Dongho
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1537-1540
    • /
    • 2015
  • 본 연구에서는 역운동학(IK, Inverse Kinematics)을 이용한 스포츠클라이밍 자세생성과 동작제어를 통해 인간의 일반적인 동작 이외에 스포츠와 같은 특수 목적의 동작들을 삼차원의 가상공간에서 스포츠 클라이밍의 기본동작 절차를 이용하여 가상 인물(Virtual Character)의 자세 및 동작을 생성한다. 역운동학(IK, Inverse Kinematics) 알고리즘을 통한 자세 생성은 역운동학 함수 (IK Function)와 실제 데이터를 통한 기본자세 애니메이션을 제작, 이를 활용하여 사실성을 더하고 자연스러운 자세 및 동작을 생성한다. 스포츠클라이밍은 특별한 제약사항이 없어 스포츠 클라이밍의 올바른 자세 생성에는 많은 문제가 있다. 예를 들어 자유로운 동작에 의한 무리한 형태의 자세 생성들이 그러하다. 본 논문에서는 이를 스포츠 클라이밍의 기본동작 절차를 이용하여 올바른 자세와 함께 실제와 유사한 동작을 생성한다.

An Accuracy Improvement Algorithm for the Manipulators with Closed-Form Inverse Kinematic Solutions (닫힌 형태의 역기구학 해를 갖는 매니퓰레이터의 정밀도 개선 알고리즘)

  • Cho, Hye-Kyung;Cho, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1093-1098
    • /
    • 2000
  • This paper presents an efficient algorithm for including the kinematic calibration data into the motion controller to improve the positioning accuracy of the manipulators. Rather than spending several iterations for finding the inverse solution of the calibrated kinematics, our approach requires only the nominal inverse solution and the calibrated forward kinematics for providing a better position command promptly. Thus, real-time application is guaranteed whenever the manipulators nominal inverse solution can be expressed in a closed form. Experimental results show that the line tracking performances can be remarkably improved by employing our algorithm.

  • PDF

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms (두 개의 스튜어트 플랫폼을 이용한 병렬형 신 압연기의 조작성 해석)

  • 이준호;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.925-936
    • /
    • 2003
  • The manipulability analysis of the parallel-type rolling mill proposed in Hong et al. [1] is re-visited. The parallel rolling mill uses two Stewart platforms in opposite direction for the generation of 6 degree-of-freedom motions of each roll. The objective of this new parallel rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of rolls, and tension of the strip. New forward/inverse kinematics problems, in contrast with [1], are formulated. The forward kinematics problem is defined as the problem of finding the roll-gap and the pair-crossing angle of two work rolls for given lengths of twelve legs. On the other hand, the inverse kinematics problem is defined as the problem of finding the lengths of twelve legs when the roll-gap, the pair-crossing angle, and the position and orientation of one work roll are given. The method of manipulability analysis used in this paper follows the spirit of [1]. But, because the rolling force and moment exerted from both upper and lower rolls have been included in the manipulability analysis, more accurate results than the use of a single platform can be achieved. Two. kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

A Kinematics Approach to 3D Graphical Interface (3D 그래픽스 인터페이스에 대한 운동학적 접근)

  • Lee, Joo-Haeng;Jang, Tae-Ik;Kim, Myung-Soo;Kim, Mansoo;Chong, Kyung Taek;Lee, Ee Taek
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 1996
  • In 3D graphics interface, 3D objects and virtual camera have many degrees of freedom. We interpret the control of 3D objects and virtual camera as a problem of kinematics and inverse kinematics. It is well known that extra degrees of freedom introduce various singularities in inverse kinematics. In this paper, we approach 3D graphics interface problems by reducing redundant degrees of freedom so that the control degrees of freedom matches with the degrees of freedom in the motions of 3D objects and virtual camera.

  • PDF

A Study on the Determination of Cutting Work Envelope of Articular Robot for H-beam Cutting (H-beam 절단용 다관절 로봇의 절단작업영역 설정에 관한 연구)

  • Park, Ju-Yong;Lee, Yong-Gu
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.55-61
    • /
    • 2009
  • This study aims for determination of cutting work envelope of an articular robot for H-beam cutting. The robot has its own work envelope. The cutting of piece with groove requires the specific position of the torch which contracts the work envelope. This study suggested the new method to determine the cutting work envelope for this case. The method simplified the problem by use of the combination of inverse kinematics and forward kinematics. The method was used for cutting the H-beam with groove. The cutting work envelope was determined easily. The result was verified by 3D simulation system which implements the articular robot with 6 axes and the H-beam in the virtual shop.

Development of the Robot Manipulator for Kinematies (기구학적 분석을 이용한 로봇 매니퓰레이터 개발)

  • Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study is kinematics for the manipulator development of cucumber harvesting. A theory value was verified by repeated error measurement after the forward kinematics or inverse kinematics analysis of manipulator. Manipulator is consisted of one perpendicular link and two revolution link. The transformation of manipulator can be valued by kinematics using Denavit-Hartenberg parameter. The value of inverse kinematics which is solved by three angles faction shows two types. Repeated errors refered maximum 2.60 mm, 2.05mm and 1.55 mm according to X, Y, Z axis. In this study, the actual coordinates of maximum point and minimum point were agreement in the forward kinematics or inverse kinematics. The results of repeated error measurement were reflect to be smaller compared to a diameter of cucumber. measurement errors were determined by experimented errors during the test. For reducing errors of manipulator and improving work efficiency, the number of link should be reduced and breeding and cultural environment should be considered to reduce the weight and use the hard stuff. The velocity of motor for working should be considered, too.

Kinematics Analysis of a 2-DOF Parallel Manipulator (2개의 자유도를 가진 병렬 매니퓰레이터의 기구학 해석)

  • Lee, Jong-Gyu;Lee, Sang-Ryong;Lee, Choon-Young;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • In this paper, a parallel manipulator is comprised of two sliders and four links. Sliders execute a linear reciprocating motion depending on parallel guides and make the connected links rotate. A couple of links connected by sliders do coupling motion. The end-effector called a link tip has orientation angle. Through the kinematics analysis of this manipulator, we found displacement, velocity and acceleration using direct and inverse kinematics. We used equations that derived from this analysis and determined five constraint conditions. These conditions had much to do with rotation states of links, the relative relation of link length and coupling motion state. To verify those, we suggest a new algorithm regarding constraint conditions of a manipulator. With the result which performed the algorithm, we found out that operation range of coupled links was limited by relative relation of link length and that manipulator was not able to carry out a series of link motion, in case of being the link vertical between two parallel guides.

Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy (여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획)

  • Lee, Jong-Hwa;Kim, Ja-Young;Lee, Ji-Hong;Kim, Dong-Hyeok;Lim, Hyun-Kyu;Ryu, Si-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.