• Title/Summary/Keyword: Inverse transformation

Search Result 224, Processing Time 0.025 seconds

Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes (Agrobacterium을 이용한 팽이 버섯 주름조직의 형질전환)

  • Park, Soon-Young;Van Peer, Arend F.;Jang, Kab-Yeul;Shin, Pyung-Gyun;Park, Yun-Hung;Yoo, Young-Bok;Park, Ki-Moon;Kong, Won-Sik
    • The Korean Journal of Mycology
    • /
    • v.38 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • Agrobacterium-mediated transformation was conducted in order to generate DNA insertional mutants of Flammulina velutipes. Agrobacterium tumefaciens AGL-1 harboring pBGgHg was transformed into gill tissues of Flammulina velutipes strain KACC42777. The transformants resistant on hygromycine ($30\;{\mu}g/ml$) were confirmed by PCR. The targeted insertional sites were amplified by inverse PCR and sequenced. To find the phenotype variation of all generated transformants, bottle cultivation which followed by the standard cultivation protocol were conducted. Color variation was observed on the cultivated fruiting bodies. Furthermore, the transformant pool will be used as a good genetic resources for studying gene function.

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

A New fault Location Algorithm for a Line to Ground fault Using Direct 3-phase Circuit Analysis in Distribution Power Networks (3상회로 직접해석에 의한 배편계통 1선지락사고 고장거리 계산 알고리즘)

  • Choe, Myeon-Song;Lee, Seung-Jae;Lee, Deok-Su;Jin, Bo-Geon;Min, Byeong-Un
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.409-416
    • /
    • 2002
  • This paper presents a fault location algorithm using direct 3-phase circuit analysis for distribution power networks. The unbalanced feature of distribution networks due to single phase loads or asymmetric operation prohibits us from using the conventional symmetrical component transformation. Even though the symmetrical component transformation provides us with a very easy tool in three phase network analysis, it is limited to balanced systems in utilizing its strong point, which is not suitable for distribution networks. In this paper, a fault location algorithm using direct 3-phase circuit analysis is developed. The algorithm is derived and it Is shown that the proposed method if we use matrix inverse lemma, is not more difficult then the conventional methods using symmetrical component transformation. Since the symmetrical component transformation is not used in the suggested method, unbalanced networks also can be handled with the same difficulty as balanced networks. The case study results show the correctness and effectiveness of the proposed algorithm.

INJECTIVE PARTIAL TRANSFORMATIONS WITH INFINITE DEFECTS

  • Singha, Boorapa;Sanwong, Jintana;Sullivan, Robert Patrick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.109-126
    • /
    • 2012
  • In 2003, Marques-Smith and Sullivan described the join ${\Omega}$ of the 'natural order' $\leq$ and the 'containment order' $\subseteq$ on P(X), the semigroup under composition of all partial transformations of a set X. And, in 2004, Pinto and Sullivan described all automorphisms of PS(q), the partial Baer-Levi semigroup consisting of all injective ${\alpha}{\in}P(X)$ such that ${\mid}X{\backslash}X{\alpha}\mid=q$, where $N_0{\leq}q{\leq}{\mid}X{\mid}$. In this paper, we describe the group of automorphisms of R(q), the largest regular subsemigroup of PS(q). In 2010, we studied some properties of $\leq$ and $\subseteq$ on PS(q). Here, we characterize the meet and join under those orders for elements of R(q) and PS(q). In addition, since $\leq$ does not equal ${\Omega}$ on I(X), the symmetric inverse semigroup on X, we formulate an algebraic version of ${\Omega}$ on arbitrary inverse semigroups and discuss some of its properties in an algebraic setting.

The structured multiparameter eigenvalue problems in finite element model updating problems

  • Zhijun Wang;Bo Dong;Yan Yu;Xinzhu Zhao;Yizhou Fang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.493-500
    • /
    • 2023
  • The multiparameter eigenvalue method can be used to solve the damped finite element model updating problems. This method transforms the original problems into multiparameter eigenvalue problems. Comparing with the numerical methods based on various optimization methods, a big advantage of this method is that it can provide all possible choices of physical parameters. However, when solving the transformed singular multiparameter eigenvalue problem, the proposed method based on the generalised inverse of a singular matrix has some computational challenges and may fail. In this paper, more details on the transformation from the dynamic model updating problem to the multiparameter eigenvalue problem are presented and the structure of the transformed problem is also exposed. Based on this structure, the rigorous mathematical deduction gives the upper bound of the number of possible choices of the physical parameters, which confirms the singularity of the transformed multiparameter eigenvalue problem. More importantly, we present a row and column compression method to overcome the defect of the proposed numerical method based on the generalised inverse of a singular matrix. Also, two numerical experiments are presented to validate the feasibility and effectiveness of our method.

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Development of on-line inverse kinematic algorithm and its experimental implementation (온라인 좌표 역변환 알고리듬의 개발과 이의 실험적 수행)

  • 오준호;박서욱;이두현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.16-20
    • /
    • 1988
  • This paper presents a new algorithm for solving the inverse kinematics in real-time applications. The end-tip movement of each link can be resolved into the basic resolution unit, .DELTA.l, which depends on link length, reduction ratio and resolution of the incremental encoder attached to the joint. When x- and y-axis projection of the end-tip movement are expressed in .DELTA.l unit, projectional increments .DELTA.x and .DELTA.y become -1, 0 or I by truncation. By using the incremental computation with these ternary value and some simple logic rules, a coordinate transformation can be realized. Through this approach, it should be noted that the floating-point arithmetic and the manipulation of trigonometric functions are completely eliminated. This paper demonstrates the proposed method in a parallelogram linkage type, two-link arm.

  • PDF

An Efficient Iterative Inverse Kinematic Analysis for General Robot Manipulators Using Near Position (근접 위치를 이용한 일반적인 로봇 매니퓰레이터의 효율적인 반복적 역기구학 해석 문제)

  • 강성철;조소형;김문상;조선휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1640-1648
    • /
    • 1991
  • 본 연구에서는 이러한 편사 함수 최소화의 방법을 적용함에 있어 보다 안정된 수렴성과 계산 시간을 단축시키기 위하여 근접 위치 방법(near position method)을 개 발하여 적용하였다. 근접 위치 방법이란 이론적 해석법으로 풀기가 불가능한 기구학 을 갖는 6관절 로봇을 반복적 해석법을 사용한다는 것을 전제로 하여, 초기 위치를 목 표 위치에 가능한 근접하게 잡아서 반복 계산을 수행하는 방법으로써 로봇의 기구학적 자세에 따른 수렴의 불안정성을 방지하고, 계산 시간을 단축하는데 그 목적이 있다.

A Keyframe Editor of Arms and Hands for 3D Sign-Language Animation (3D 수화 애니메이션을 위한 팔과 손의 키 프레임 에디터)

  • ;;Yoshinao Aoki
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.548-551
    • /
    • 1999
  • We design a keyframe editor of arms and hands for 3D sign-language animation using inverse kinematics. In the previous study, we acquired only the joint angles of two arms after selecting arbitrarily the shapes of hands. In this paper, both joint angles of arms and hands are calculated by the same transformation matrix of the inverse kinematics. In the method, the design window of arm gestures can be converted into that of hand shapes by clicking a button. Experimental results show a possibility that the proposed method could be used for building up the sign-language communication dictionaries.

  • PDF

KAIST ARM의 고속동작제어를 위한 하드웨어 좌표변환기의 개발

  • 박서욱;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.127-132
    • /
    • 1992
  • To relize the future intelligent robot the development of a special-purpose processor for a coordinate transformation is evidently challenging task. In this case the complexity of a hardware architecture strongly depends on the adopted algorithm. In this paper we have used an inverse kinemetics algorithm based on incremental unit computation method. This method considers the 3-axis articulated robot as the combination of two types of a 2-axis robot: polar robot and 2-axis planar articulated one. For each robot incremental units in the joint and Cartesian spaces are defined. With this approach the calculation of the inverse Jacobian matrix can be realized through a simple combinational logic gate. Futhermore, the incremental computation of the DDA integrator can be used to solve the direct kinematics. We have also designed a hardware architecture to implement the proposed algorithm. The architecture consists of serveral simple unitsl. The operative unit comprises several basic operators and simple data path with a small bit-length. The hardware architecture is realized byusing the EPLD. For the straight-line motion of the KAIST arm we have obtained maximum end effector's speed of 12.6 m/sec by adopting system clock of 8 MHz.