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INJECTIVE PARTIAL TRANSFORMATIONS WITH

INFINITE DEFECTS

Boorapa Singha, Jintana Sanwong, and Robert Patrick Sullivan

To K. P. Shum on his 70th birthday, a respected mentor for mathematics in Asia

Abstract. In 2003, Marques-Smith and Sullivan described the join Ω

of the ‘natural order’ ≤ and the ‘containment order’ ⊆ on P (X), the
semigroup under composition of all partial transformations of a set X.
And, in 2004, Pinto and Sullivan described all automorphisms of PS(q),
the partial Baer-Levi semigroup consisting of all injective α ∈ P (X) such

that |X \ Xα| = q, where ℵ0 ≤ q ≤ |X|. In this paper, we describe
the group of automorphisms of R(q), the largest regular subsemigroup
of PS(q). In 2010, we studied some properties of ≤ and ⊆ on PS(q).
Here, we characterize the meet and join under those orders for elements

of R(q) and PS(q). In addition, since ≤ does not equal Ω on I(X), the
symmetric inverse semigroup on X, we formulate an algebraic version of
Ω on arbitrary inverse semigroups and discuss some of its properties in
an algebraic setting.

1. Introduction

Suppose X is a non-empty set, and let P (X) denote the semigroup (under
composition) of all partial transformations of X (that is, all mappings α : A →
B, where A,B ⊆ X). For any α ∈ P (X), we let domα and ranα denote the
domain of α and range of α, respectively. We also write

g(α) = |X \ domα|, d(α) = |X \ ranα|,
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and refer to these cardinals as the gap and the defect of α, respectively. And,
as usual, I(X) denotes the symmetric inverse semigroup on X (see [2, vol 1, p.
29]): that is, the set of all injective mappings in P (X). If |X| = p ≥ q ≥ ℵ0,
we write

PS(q) = {α ∈ I(X) : d(α) = q}
and call this the partial Baer-Levi semigroup on X (as first defined in [12, p.
82]). When necessary, we will use the notation PS(X, p, q) to highlight the set
X and its cardinal p.

In [9, Theorem 2], the authors proved that AutPS(q), the group of all au-
tomorphisms of PS(q), is isomorphic to G(X), the symmetric group on X.
They also showed that, if X and Y are sets such that |X| = p ≥ q ≥ ℵ0 and
|Y | = r ≥ s ≥ ℵ0, then PS(X, p, q) is isomorphic to PS(Y, r, s) if and only if
p = r and q = s (see [9, Theorem 3]). In addition, as shown in [9, Corollary 1],
PS(q) contains an inverse semigroup

R(q) = {α ∈ PS(q) : g(α) = q}
which consists of all the regular elements of PS(q). By following the ideas in
[9, Section 2], we show in Section 3 that these results about automorphisms
and isomorphisms also hold for R(q).

In [8] Mitsch defined a partial order on an arbitrary semigroup S by

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S1,

and now this is called the natural order on S. Later in [5] the authors studied
various properties of this order on the semigroup T (X) consisting of all total
transformations of X (that is, all α ∈ P (X) for which domα = X). Then in [7]
Marques-Smith and Sullivan extended some of the previous work to the ordered
semigroups (P (X),≤) and (P (X),⊆), where ⊆ denotes the containment order
on P (X): that is, the partial order defined by

α ⊆ β if and only if domα ⊆ domβ and xα = xβ for all x ∈ domα.

They also defined partial orders Ω′ and Ω on P (X) as follows.

(α, β) ∈ Ω′ if and only if Xα ⊆ Xβ, domα ⊆ domβ and

αβ−1 ∩ (domα× domα) ⊆ αα−1,

(α, β) ∈ Ω if and only if (α, β) ∈ Ω′ and ββ−1 ∩ (domα× domα) ⊆ αα−1.

And, in [7, Theorem 7], they proved that Ω equals the join of ≤ and ⊆ in the
poset of all partial orders on P (X).

In [11] the authors observed that ≤ = ⊆ and Ω = Ω′ on I(X), but ≤ does not
equal Ω on I(X). In Section 6, we define a new partial order on any inverse
semigroup, show that it equals Ω on I(X) and discuss some of its algebraic
properties. On the other hand, it was shown in [11] that, when restricted to
PS(q), ≤ is properly contained in ⊆, and ⊆ is properly contained in Ω. In
Sections 4 and 5, we characterize the meet and join for elements of R(q) and
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PS(q) under ≤ and ⊆. We leave the more complicated problem about meets
and joins in these semigroups under Ω to a subsequent paper.

2. Preliminary notation and results

In this paper, Y = A ∪̇B means Y is a disjoint union of A and B. As usual,

∅ denotes the empty (one-to-one) mapping which acts as a zero for P (X). For
each non-empty A ⊆ X, we write idA for the identity transformation on A:
these mappings constitute all the idempotents in I(X) and belong to PS(q)
precisely when |X \A| = q.

It is well-known that, for each non-zero α ∈ I(X), αα−1 = iddomα and
α−1α = idranα. Consequently, this is also true for PS(q) and we use this fact
without further mention.

We modify the convention introduced in [2, vol 2, p. 241]: namely, if α ∈
I(X) is non-zero, then we write

α =

(
ai
xi

)
and take as understood that the subscript i belongs to some (unmentioned)
index set I, that the abbreviation {xi} denotes {xi : i ∈ I}, and that ranα =
{xi}, xiα

−1 = {ai} and domα = {ai : i ∈ I}. For simplicity, if A ⊆ X, we
sometimes write Aα in place of (A ∩ domα)α. In addition, we let xa denote
the mapping with domain {x} and range {a}.

In [1], the authors showed that, if |X| = p ≥ q ≥ ℵ0, then

A(X) = {α ∈ I(X) : g(α) = d(α)}
is a factorisable inverse semigroup (that is, A(X) = GE, where G is the group
of units and E is the set of idempotents in A(X)). And, in [10, Theorem 3],
it was shown that any factorisable inverse semigroup S can be embedded in
A(S).

Although R(q) is an inverse subsemigroup of A(X), we assert that it is never
factorisable. To see this, suppose there exists ε ∈ R(q) such that αε = εα = α
for all α ∈ R(q), and write X = B ∪̇C ∪̇ {x} where |B| = p and |C| = q. Then,
from idB∪{x} ∈ R(q) and idB∪{x} ◦ε = idB∪{x}, we deduce that x ∈ ran ε for
all x ∈ X. Since ε is idempotent, it follows that ε = idX which does not belong
to R(q). That is, R(q) does not contain an identity and so, by [1, Lemma 2.1],
R(q) is not factorisable.

In [4] Howie used R(q), for q < p, to construct a class of bisimple congruence-
free inverse semigroups, something that “seems rarely to be easy” ([4, p. 337]).
On the other hand, in [13, Corollary 4], Sullivan proved that α ∈ I(X) is a
product of nilpotents in I(X) if and only if d(α) = g(α) = p. As in the proof of
[9, Theorem 1], it is easy to see that R(q) contains a zero precisely when q = p
and, in this case, the zero is ∅. Hence, if q < p, then no element of R(q) is a
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product of nilpotents in R(q) (since any nilpotent in R(q) is also nilpotent in
I(X)). However, R(p) equals the semigroup generated by all of the nilpotents
in I(X). Also, as in [11] Remark (with a small correction), if p = q, then PS(p)
is the union of R(p) and the set of elements in PS(p) which are maximal under
≤, and the latter set forms a semigroup.

3. Automorphisms and isomorphisms

In [12, Theorem 3], Sullivan showed that AutPS(q) andG(X) are isomorphic
when p = q. Later, in [9, Theorem 2], Pinto and Sullivan showed that this is
also true when p > q. Here, we first consider the problem of describing all
automorphisms of R(q).

As in [12], a subsemigroup S of P (X) is G(X)-normal if βαβ−1 ∈ S for
all α ∈ S and all β ∈ G(X). It is easy to see that PS(q) is G(X)-normal,
and consequently the same is true for R(q) (since R(q) is the set of all regular
elements of PS(q)).

When p = q, we know R(q) covers X: that is, for each x ∈ X, there is a
constant idempotent (namely id{x}) in R(q) with range {x}. So, in this case,
[12, Theorem 1] implies that φ is inner for all φ ∈ AutR(q): that is, there exists
β ∈ G(X) such that αφ = βαβ−1 for all α ∈ R(q). Also, by [12, Theorem 2],
AutR(q) is isomorphic to G(X).

We now consider the same problem when p > q. In fact, in [6, Theorem
3.18], Levi proved that, if S is a constant-free G(X)-normal subsemigroup of
P (X) which contains a non-total transformation, then every automorphism of
S is inner. So, every automorphism of R(q) is inner when p > q. By using
arguments similar to those in [9, Section 2], we obtain the following results.

Lemma 1. For each φ ∈ AutR(q), there exists a unique γ ∈ G(X) such that
αφ = γ−1αγ for all α ∈ R(q) and, in this event, we write γ = γφ.

Proof. Let φ ∈ AutR(q). Then φ is inner, so there exists γ ∈ G(X) such
that αφ = γ−1αγ for all α ∈ R(q). Suppose there exists µ ∈ G(X) such that
γ−1αγ = αφ = µ−1αµ for all α ∈ R(q). Let x ∈ X and write X = A ∪̇B ∪̇ {x}
where |A| = p and |B| = q. If α = idA and β = idA ∪̇ {x}, then α, β ∈ R(q).
This implies that

Aγ = Xγ−1αγ = Xµ−1αµ = Aµ

and
(A ∪̇ {x})γ = Xγ−1βγ = Xµ−1βµ = (A ∪̇ {x})µ.

Since γ and µ are injective, we have

Aγ ∪̇ {xγ} = Aµ ∪̇ {xµ},
where Aγ = Aµ. Thus xγ = xµ for all x ∈ X, that is, γ = µ. □

The proof of the next result is identical to that for [9, Theorem 2] (after
replacing PS(q) by R(q)), so we omit the details.
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Theorem 1. If p > q, then AutR(q) → G(X), φ → γφ, is an isomorphism.

Since R(X, p, q) played an important role in both [4] and [9], it is natural
to ask whether any of the semigroups R(X, p, q) are isomorphic for different
cardinals p and q (here and below, we write R(q) as R(X, p, q) to highlight the
set X and its cardinal p). To answer this question, we first need a result for
R(q) which corresponds to [9, Lemma 1] for PS(q). Since the proof is almost
verbatim, we omit the details.

Lemma 2. If α, β ∈ R(q), then the following are equivalent.
(a) ranα ⊆ ranβ,
(b) for each γ ∈ R(q), βγ = β implies αγ = α.

Corollary 1. Suppose |X| = p ≥ q ≥ ℵ0 and |Y | = r ≥ s ≥ ℵ0. If φ :
R(X, p, q) → R(Y, r, s) is an isomorphism, then, for each α, β ∈ R(X, p, q),
ranα ⊆ ranβ if and only if ran(αφ) ⊆ ran(βφ).

Proof. Suppose α, β ∈ R(X, p, q). Then, since φ is an isomorphism, Lemma 2
provides the following equivalences:

ranα ⊆ ranβ ⇐⇒ for each γ ∈ R(X, p, q), βγ=β implies αγ=α

⇐⇒ for each γ ∈ R(X, p, q), βφ.γφ=βφ implies αφ.γφ=αφ

⇐⇒ for each γ′ ∈ R(Y, r, s), βφ.γ′=βφ implies αφ.γ′=αφ

⇐⇒ ran(αφ) ⊆ ran(βφ). □
Theorem 2. The semigroups R(X, p, q) and R(Y, r, s) are isomorphic if and
only if p = r and q = s. Moreover, for each isomorphism φ, there is a bijection
γ : X → Y such that αφ = γ−1αγ for each α ∈ R(X, p, q).

Proof. Clearly, if the cardinals are equal as stated, then any bijection from X
onto Y will induce an isomorphism between the semigroups. So, we assume
there is an isomorphism φ : R(X, p, q) → R(Y, r, s) and write

U = {ranα : α ∈ R(X, p, q)}, V = {ranβ : β ∈ R(Y, r, s)}.
Let Γ : U → V be defined by (ranα)Γ = ran(αφ). Then, by Corollary 1, Γ is an
order-monomorphism: that is, Γ is injective and A ⊆ B if and only if AΓ ⊆ BΓ
for all A,B ∈ U . Next, if C = ranβ for some β ∈ R(Y, r, s), then β = αφ for
some α ∈ R(X, p, q) (since φ is onto). Thus (ranα)Γ = ran(αφ) = ranβ = C,
so Γ is onto. In fact, if

B(X, q) = {A ⊆ X : |X \A| = q}, B(Y, s) = {B ⊆ Y : |Y \B| = s},
then U = B(X, q) and V = B(Y, s), since idA ∈ R(X, p, q) and idB ∈ R(Y, r, s)
for all A ∈ B(X, q) and B ∈ B(Y, s). That is, Γ is an order-isomorphism from
B(X, q) onto B(Y, s). Thus by [9, Lemma 2], there exists a bijection γ : X → Y
such that AΓ = Aγ for all A ∈ B(X, q), so p = r. By using the same argument
as in the proof of [9, Theorem 3], we have αφ = γ−1αγ for all α ∈ R(X, p, q).
Finally, since αφ ∈ R(Y, r, s), we have s = |Y \ Y (αφ)| = |Y \ Y γ−1αγ| =
|Xγ \Xαγ| = |(X \Xα)γ| = q. □
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Although we have used some ideas from [9, Section 2], a careful reading of
the above discussion shows that we have not used [9, Theorem 3]: namely, the
characterization of when PS(X, p, q) is isomorphic to PS(Y, r, s). Therefore,
since R(X, p, q) is the largest regular subsemigroup of PS(X, p, q), we can de-
duce the following result. However, an explicit description of all isomorphisms
between PS(X, p, q) and PS(Y, r, s) in terms of associated bijections between
X and Y seems to require an argument like that in the proof of [9, Theorem
3].

Corollary 2. The semigroups PS(X, p, q) and PS(Y, r, s) are isomorphic if
and only if p = r and q = s.

4. Meets

In this section, we study the existence of a meet α ∧ β for α, β in the semi-
groups I(X), PS(q) and R(q) for each of the orders ≤ and ⊆. To do this,
we first define the equaliser of α, β ∈ I(X) (compare [14, p. 416] for linear
transformations) as follows.

E(α, β) = {x ∈ domα ∩ domβ : xα = xβ}.

The next result may be well-known, but we do not know a reference in the
literature (recall that ⊆ equals ≤ on I(X)).

Theorem 3. Let α, β ∈ I(X) and E = E(α, β). Then, under ⊆, α ∧ β =
α|E = β|E.

Proof. As discussed in [7], each α ∈ P (X) can be regarded as a special subset
of X ×X. With this in mind, if α, β ∈ I(X), then α ∩ β ∈ I(X) and clearly
α ∩ β = α ∧ β (as sets). Also, E = ∅ if and only if α ∩ β = ∅; and, if E ̸= ∅,
then α ∩ β = α|E = β|E. □

Recall that ≤ is properly contained in ⊆ on PS(q). Thus, unlike for Theorem
3, we expect a characterization of meets in (PS(q),⊆) to involve an additional
condition. As stated in Section 2, if A ⊆ X and α ∈ I(X), then Aα denotes
(A ∩ domα)α.

Theorem 4. Let α, β ∈ PS(q) and E = E(α, β). Then γ ⊆ α, β for some
non-empty γ ∈ PS(q) if and only if

(a) E ̸= ∅, and
(b) max(|Xα \ Eα|, |Xβ \ Eβ|) ≤ q.

Moreover, when this occurs, α ∩ β is the non-empty meet of α, β under ⊆.

Proof. Suppose ∅ ̸= γ ⊆ α, β in PS(q). Then ∅ ̸= dom γ ⊆ domα∩ domβ and
xα = xγ = xβ for all x ∈ dom γ. That is, ∅ ̸= dom γ ⊆ E and this implies
Xγ = Eγ. Now Eγ = (E ∩ dom γ)γ ⊆ Eα ⊆ Xα and so

|Xα \ Eα| ≤ |Xα \ Eγ| ≤ |X \Xγ| = q.
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Similarly, |Xβ \ Eβ| ≤ q and hence the conditions hold. Conversely, if the
conditions hold, then γ = α ∩ β is a non-empty element of I(X) with domain
E = E(α, β) and γ ⊆ α, β. Moreover, since Xγ = Eγ = Eα ⊆ Xα, we
have X \Xγ = (X \Xα) ∪̇ (Xα \ Eα) and it follows that d(γ) = q. That is,
γ ∈ PS(q). □

Of course, when we turn to R(q), we expect a further condition to be needed
in order to characterize meets in R(q) under ⊆.

Theorem 5. Let α, β ∈ R(q) and E = E(α, β). Then γ ⊆ α, β for some
non-empty γ ∈ R(q) if and only if

(a) E ̸= ∅,
(b) max(|Xα \ Eα|, |Xβ \ Eβ|) ≤ q, and
(c) max(| domα \ E|, | domβ \ E|) ≤ q.

Moreover, when this occurs, α ∩ β is the non-empty meet of α, β under ⊆.

Proof. Suppose ∅ ̸= γ ⊆ α, β. Since R(q) ⊆ PS(q), Theorem 4 implies that (a)
and (b) hold. Since dom γ ⊆ E ⊆ domα, we have

| domα \ E| ≤ |domα \ dom γ| ≤ |X \ dom γ| = q.

Similarly, | domβ \ E| ≤ q and hence (c) holds. Conversely, suppose the con-
ditions hold. By Theorem 4 again, (a) and (b) imply that γ = α ∩ β is a
non-empty element of PS(q) and it is also the meet of α, β in PS(q) under ⊆.
Also, since dom γ = E ⊆ domα, we have

X \ dom γ = (X \ domα) ∪̇ (domα \ E).

Then (c) implies that g(γ) = q, hence γ ∈ R(q). □

In [11, Theorem 2.4], the authors proved that ≤ equals ⊆ ∩ L on PS(q),
where L is the relation defined on PS(q) by

(α, β)∈L⇐⇒ α=β or Xα ⊆ Xβ and q≤max(g(β), |Xβ\Xα|)≤max(g(α), q).

Note that if α ∧ β = ∅ in PS(q) under ≤, then p = q. In this case, if x ∈
E = E(α, β) and xα = xβ = y, then xy ∈ PS(q) and xy ⊆ α, β. Also, since
|Xα \ {y}| = | domα \ {x}| and g(α) = |X \ domα|, we have

q = p = max(g(α), |Xα \ {y}|) ≤ max(g(xy), q) = p = q.

That is, xy ≤ α, β, so xy ≤ α ∧ β = ∅, a contradiction. In other words, if
α ∧ β = ∅, then E = ∅ and so α ∩ β = ∅. Consequently, α ∧ β = α ∩ β when
one of these equals ∅.

In essence, condition (b) in the next result ensures that, when α ∩ β equals
α∧β under ⊆ on PS(q), then it also equals α∧β under ≤ on PS(q). As usual,
if ⪯ is a partial order on a set S, we say a, b ∈ S are non-comparable if a ̸⪯ b
and b ̸⪯ a.
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Theorem 6. Suppose α, β ∈ PS(q) are non-comparable under ≤ and let E =
E(α, β). Then γ ≤ α, β for some non-empty γ ∈ PS(q) if and only if there
exists a non-empty Y ⊆ E such that

(a) max(|Xα \ Y α|, |Xβ \ Y β|) ≤ q and
(b) q ≤ max(g(α), |Xα \ Y α|) and q ≤ max(g(β), |Xβ \ Y β|).

In this event, γ = α|Y = β|Y . Hence, α∧ β exists in PS(q) under ≤ and it
is non-empty precisely when α and β satisfy conditions (a) and (b) and Y = E,
in which case α ∧ β = α|E = β|E.

Proof. Suppose ∅ ̸= γ ≤ α, β and let Y = dom γ. Then γ ⊆ α, β and so
xα = xγ = xβ for all x ∈ Y . That is, Y ⊆ E and Xγ = Y γ = Y α = Y β. Since
d(γ) = q, we see that |Xα \ Y α| ≤ |X \Xγ| = q and likewise |Xβ \ Y β| ≤ q,
so (a) holds. Also (γ, α) ∈ L and (γ, β) ∈ L imply

q ≤ max(g(α), |Xα \ Y α|) and q ≤ max(g(β), |Xβ \ Y β|).

Conversely, suppose the conditions hold and write

(1) α =

(
yi ej um

ai aj am

)
, β =

(
yi ej vn
ai aj bn

)
, γ =

(
yi
ai

)
,

where Y = {yi} and E = Y ∪̇ {ej} (possibly J = ∅). Then d(γ) = |J |+ |M |+
d(α) = q (by supposition since |J |+ |M | = |Xα \ Y α|), so γ ∈ PS(q). Clearly,
γ ⊆ α, β. Also, g(γ) = |J | + |M | + g(α) ≥ g(α). Now, if g(γ) ≤ q, then
condition (a) implies that

max(g(α), |Xα \Xγ|) ≤ q = max(g(γ), q);

and if q < g(γ), then, since |Xα \Xγ| = |Xα \ Y α| ≤ q, we have:

max(g(α), |Xα \Xγ|) ≤ g(γ) = max(g(γ), q).

Hence, the above and condition (b) imply that (γ, α) ∈ L and similarly (γ, β) ∈
L. Thus, we have shown that γ ≤ α, β.

Finally, suppose γ = α∧β exists and is non-empty, and write α, β as in (1).
If g(γ) < q, then [11, Theorem 4.3] implies that γ is maximal under ≤ and so
γ = α = β, contradicting the supposition. Hence g(γ) ≥ q. Now γ ≤ α, β,
so Y = dom γ ⊆ E and hence α and β satisfy (a) and (b). If there exists
e0 ∈ E \ Y for some 0 ∈ J , we can define γ′ ∈ PS(q) by

γ′ =

(
yi e0
ai a0

)
.

Then γ ⊆ γ′ ⊆ α and |Xγ′ \Xγ| = 1, and we see that

g(γ) = |J |+ |M |+ g(α),

g(γ′) = |J \ {0}|+ |M |+ g(α).
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Thus, if |J |+ |M | ≥ ℵ0, then g(γ) = g(γ′) ≥ g(α); and if |J |+ |M | < ℵ0, then
γ ≤ α implies q ≤ max(g(α), |J |+ |M |), so g(α) ≥ q and hence g(γ) = g(γ′) ≥
g(α). Similarly, in both cases, g(γ′) ≥ |J |+ |M |. Therefore,

q ≤ g(γ) = max(g(α), |J |+ |M |) ≤ max(g(γ′), 1) = g(γ) ≤ max(g(γ), q).

Thus (γ, γ′) ∈ L and likewise (γ′, α) ∈ L. In other words, we can show that
γ < γ′ ≤ α, β, a contradiction. Hence, it follows that Y = E. Conversely,
suppose Y = E and α and β satisfy (a) and (b). Then, by the first part of this
proof, γ ≤ α, β where γ = α|E = β|E ∈ PS(q). Moreover, if γ ≤ γ′ ≤ α, β
for some γ′ ∈ PS(q), then xγ′ = xα = xβ for all x ∈ dom γ′, so E = dom γ ⊆
dom γ′ ⊆ E, and it follows that γ = γ′. That is, γ = α ∧ β. □

In effect, by [11, Theorem 4.3], the next result determines when two elements
of PS(q), which are maximal under ≤, possess a meet under ≤.

Corollary 3. Suppose α, β ∈ PS(q) are non-comparable under ≤ and let E =
E(α, β). If g(α) < q and g(β) < q, then α ∧ β exists in PS(q) under ≤ if and
only if |Xα \ Eα| = q = |Xβ \ Eβ|.

Proof. Suppose g(α) < q. If α ∧ β exists under ≤, then Theorem 6(b) implies
that q ≤ |Xα \ Eα| which is at most q by Theorem 6(a). Thus |Xα \ Eα| = q
and likewise g(β) < q implies |Xβ \ Eβ| = q. Conversely, if |Xα \ Eα| = q =
|Xβ \Eβ|, then both (a) and (b) hold for E = E(α, β) in Theorem 6, so α∧ β
exists. □

Example 1. Suppose X = M ∪̇N ∪̇ {b, c}, where |M | = p, |N | = q and

α =

(
M ∪N b

M b

)
, β =

(
M ∪N c

M c

)
,

where E = E(α, β) = M ∪ N . Then d(α) = q = d(β), so α, β ∈ PS(q) and
α ∩ β = α|E ∈ PS(q). But, |Xα \ Eα| = 1 = |Xβ \ Eβ| and g(α) = 1 = g(β),
so E satisfies condition (a) in Theorem 6 but not condition (b), and hence α∧β
does not exist in (PS(q),≤). That is, although α∩β may be the greatest lower
bound under ⊆, that may not be true for ≤ since ≤ ̸= ⊆ on PS(q).

Remark 1. Suppose S is any inverse subsemigroup of I(X). If α ≤ β in S,
then α = idA ◦β for some A ⊆ X and we deduce that α ⊆ β. On the other
hand, if α ⊆ β in the inverse semigroup R(q), then α = iddomα ◦β, where
iddomα ∈ R(q), and so α ≤ β in R(q). That is, ≤ = ⊆ on R(q).

5. Joins

In this section, we study the existence of a join α∨β for α, β in the semigroups
I(X), PS(q) and R(q) for each of the orders ≤ and ⊆.

Theorem 7. Let α, β ∈ I(X) under ⊆. Then α, β ⊆ γ for some γ ∈ I(X) if
and only if

(a) domα ∩ domβ ⊆ E(α, β) and
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(b) (domα \ domβ)α ∩ (domβ \ domα)β = ∅.

Moreover, in this case, α ∨ β exists and equals α ∪ β.

Proof. Suppose α, β ⊆ γ ∈ I(X). If x ∈ domα ∩ domβ, then xα = xγ = xβ,
and so x ∈ E(α, β). On the other hand, if there exist y ∈ domα \ domβ and
z ∈ domβ \ domα such that yα = zβ, then yγ = zγ. Since γ is injective, this
implies that y = z, a contradiction.

Conversely, suppose the conditions hold and let γ = α ∪ β (as sets). Then
(a) says that γ is a mapping and (b) says it is injective, so γ ∈ I(X) and
clearly it is an upper bound of {α, β}. Moreover, if (a) and (b) hold, then
γ = α ∨ β, since α, β ⊆ λ ∈ I(X) implies α, β ⊆ α ∪ β ⊆ λ (as sets) where
α ∪ β ∈ I(X). □

Like before, the result for joins in PS(q) under ⊆ involves an extra condition.

Theorem 8. Let α, β ∈ PS(q) under ⊆. Then α, β ⊆ γ for some γ ∈ PS(q)
if and only if the following conditions hold.

(a) domα ∩ domβ ⊆ E(α, β),
(b) (domα \ domβ)α ∩ (domβ \ domα)β = ∅, and
(c) |X \ (Xα ∪Xβ)| = q.

Moreover, in this case, α ∨ β exists and equals α ∪ β.

Proof. Suppose α, β ⊆ γ in PS(q). Then, conditions (a) and (b) hold since
PS(q) ⊆ I(X). Since Xα ∪Xβ ⊆ Xγ, we also have

q = |X \Xγ| ≤ |X \ (Xα ∪Xβ)| ≤ |X \Xα| = q.

Hence (c) holds. Conversely, suppose (a), (b) and (c) hold and let γ = α ∪ β.
Then (a) and (b) imply that γ ∈ I(X), and (c) implies that d(γ) = q, that is,
γ ∈ PS(q). Finally, as in Theorem 7, we can show that α ∨ β = γ. □

Theorem 9. Let α, β ∈ R(q). Then α, β ⊆ γ for some γ ∈ R(q) if and only if
the following conditions hold.

(a) domα ∩ domβ ⊆ E(α, β),
(b) (domα \ domβ)α ∩ (domβ \ domα)β = ∅,
(c) |X \ (Xα ∪Xβ)| = q, and
(d) |X \ (domα ∪ domβ)| = q.

Moreover, when this occurs, α ∪ β is the join of α, β under ⊆.

Proof. Suppose α, β ⊆ γ in R(q). Since R(q) ⊆ PS(q), Theorem 8 implies that
(a), (b) and (c) hold. Since domα ∪ domβ ⊆ dom γ, we have

q = |X \ dom γ| ≤ |X \ (domα ∪ domβ)| ≤ |X \ domα| = q.

Hence (d) holds. Conversely, suppose the conditions hold. By Theorem 8 again,
(a), (b) and (c) imply that γ = α ∪ β is an element of PS(q) and it is also a
join of α, β under ⊆. Also, (d) implies that g(γ) = q, so γ ∈ R(q). □
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To characterize joins in PS(q) under ≤, we need two lemmas. In effect, the
first provides a description of ≤ in terms of ⊆ which differs from that in [11,
Theorem 2.4].

Lemma 3. Suppose α, β ∈ PS(q) and α ̸= β. Then α < β if and only if α ⊂ β
and g(α) ≥ q.

Proof. If α < β, then α ⊂ β and (α, β) ∈ L. Therefore, domα ⊂ domβ and
ranα ⊆ ranβ, and hence

(2) X \ domα = (X \ domβ) ∪̇ (domβ \ domα), and

Xβ = [(domβ \ domα)β] ∪̇ [(domα)β].

Now, (domα)β = (domα)α = Xα (since α ⊂ β) and so

(3) |Xβ \Xα| = |(domβ \ domα)β| = |domβ \ domα|.

By [11, Theorem 2.3], we also know that

q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q).

Hence, if max(g(β), |Xβ \ Xα|) = g(β), then q ≤ g(β) ≤ g(α) by (2); and if
max(g(β), |Xβ \Xα|) = |Xβ \Xα|, then q ≤ | domβ \ domα| ≤ g(α) by (3).
That is, the conditions hold.

Conversely, suppose the conditions hold. Then max(g(α), q) = g(α) ≥ g(β)
by (2) and Xα ⊆ Xβ. Also, |Xβ\Xα| ≤ g(α) by (3). Moreover, if |Xβ\Xα| <
q, then (2) and (3) imply that g(β) ≥ q. Consequently,

q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q),

and so (α, β) ∈ L. By [11, Theorem 2.4], it follows that α < β. □

Lemma 4. Suppose α, β ∈ PS(q) are non-comparable under ≤. Then α, β ≤ γ
for some γ ∈ PS(q) if and only if

(a) α, β ⊆ θ for some θ ∈ PS(q), and
(b) g(α) ≥ q and g(β) ≥ q.

Proof. If α, β ≤ γ, then α, β ⊆ γ, so (a) holds. In addition, if g(α) < q, then α
is maximal under ≤ (by [11, Theorem 4.3]). Hence α ≤ γ implies α = γ and so
β ≤ α, contradicting the supposition. Therefore, g(α) ≥ q and g(β) ≥ q. That
is, (b) holds.

Conversely, suppose (a) and (b) hold. Then α, β ⊆ α ∪ β = π (say, as
relations) and, from (a) and Theorem 8, we deduce that π ∈ PS(q). If α = π,
then domβ ⊆ domπ = domα and xβ = xπ = xα for each x ∈ domβ. Thus,
β ⊈ α and g(β) ≥ q, so β < α by Lemma 3, which contradicts the supposition.
Therefore, α ⊈ π and g(α) ≥ q, so α < π by Lemma 3 again. Similarly, β < π
and so α, β have an upper bound in PS(q) under ≤. □
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Example 2. Surprisingly, (a) and (b) in Lemma 4 do not ensure that α ∪ β
equals α ∨ β in PS(q) under ≤. For example, write X = A ∪̇B ∪̇C ∪̇D ∪̇ {a}
where |A| = p = |X| and |B| = |C| = |D| = q. Let

α =

(
A ∪B
A

)
∪ idC , β =

(
A ∪B
A

)
∪ idD,

where xα = xβ for all x ∈ A ∪ B. Then α, β ∈ PS(q) and they are non-
comparable under ≤ (since α ̸⊆ β and β ̸⊆ α). If θ = α ∪ β, then α, β ⊆ θ ∈
PS(q) (since d(θ) = |B| = q), hence α and β satisfy (a). Also, g(α) = |D| =
q = |C| = g(β), and hence α and β satisfy (b). By Lemma 3, α, β < θ′ =
θ∪ id{a} ∈ PS(q), but θ ̸≤ θ′ since g(θ) = 1 ̸≥ q, and thus α∪β does not equal
α ∨ β.

Theorem 10. Suppose α, β ∈ PS(q) are non-comparable under ≤. Then α∨β
exists if and only if

(a) α, β < θ for some θ ∈ PS(q), and
(b) either X = domα ∪ domβ or |X \ (domα ∪ domβ)| ≥ q.

Moreover, when this occurs, α ∨ β equals α ∪ β.

Proof. Suppose α∨β exists under ≤ and write γ = α∨β. Then α, β < γ, so (a)
holds. Consequently, α, β ⊂ γ and so Theorem 8 implies that π = α∪β ∈ PS(q)
and clearly π ⊆ γ. Now, to prove (b), suppose domα ∪ domβ ⊈ X. Choose
a ∈ X \ (domα ∪ domβ) = X \ domπ and, for any x ∈ X\Xπ (non-empty
since d(π) = q), we let

µx =

(
domπ a
Xπ x

)
,

where µx| domπ = π. Then µx ∈ PS(q) since d(µx) = |X \Xπ| = d(π) = q.
Clearly, α ⊆ µx and α ̸= µx (since a ∈ domµx \ domα). Therefore, since
g(α) ≥ q by Lemma 3 (using the fact that α < γ), we deduce that α < µx

by Lemma 3 again. Similarly, β < µx and thus γ ≤ µx for all x ∈ X \ Xπ.
If γ = µx for all x ∈ X \ Xπ, then µx = µy for all x ̸= y in X \ Xπ, a
contradiction. Hence, γ < µx for some x ∈ X \Xπ, and so γ is not maximal.
Therefore, by [11, Theorem 4.3], q ≤ g(γ) ≤ g(π) = |X \ (domα∪domβ)|, and
so we have proved (b).

Conversely, suppose the conditions hold. Then Lemma 4(a) and Theorem
8 imply that (say) π = α ∪ β ∈ PS(q) and we claim that π = α ∨ β under
≤. If π = α, then β ⊆ α and, as in the proof of Lemma 4, a contradiction
follows. Hence, α ⊂ π. In addition, since α, β < θ for some θ ∈ PS(q) by
(a), Lemma 3 implies that g(α) ≥ q. By Lemma 3, we deduce that α < π and
similarly β < π. Finally, if α, β ≤ µ for some µ ∈ PS(q), then α, β ⊆ µ and so
π ⊆ µ. Since (b) holds, if X = domα ∪ domβ, then X = domπ and so π = µ.
Consequently, if π ̸= µ, then |X \ (domα ∪ domβ)| ≥ q, so π < µ by Lemma
3. In other words, π is the join of α and β in PS(q) under ≤. □
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6. A partial order on an inverse semigroup

The Vagner-Preston Theorem states that any inverse semigroup S can be
embedded in I(S) via the mapping given by

ρ : S → I(S), a → ρa,

where, for each a ∈ S, ρa : Sa−1 → Sa, x → xa (see [2, vol 1, Theorem 1.20]).
In fact, the embedding is ≤–preserving in the sense that a ≤ b in S if and only
if ρa ≤ ρb in I(S). Probably the next result is well-known but we cannot find
a reference for it.

Theorem 11. Let S be an inverse semigroup and a, b ∈ S. Then a ≤ b in S
if and only if ρa ≤ ρb in I(S).

Proof. If a ≤ b, then a = eb for some idempotent e ∈ S. Hence, ρa = ρeρb,
where ρe is an idempotent in I(S), so ρa ≤ ρb in I(S). Conversely, if ρa ≤ ρb,
then ρa ⊆ ρb by [3, Proposition V.2.3], so (aa−1)a = (aa−1)b and hence a ≤ b
by [3, Proposition V.2.2]. □

On any inverse semigroup S, the natural partial order can be defined by

(4) a ≤ b if and only if ab−1 = aa−1.

In addition, for any set X we have ≤ = ⊆ on I(X) (see [3, Proposition V.2.3]),
but ≤ is properly contained in Ω on I(X) for |X| > 1 (see [11, p. 198]), where
Ω can be defined on I(X) as follows (recall our comments at the end of Section
1).

(α, β) ∈ Ω if and only if Xα ⊆ Xβ, domα ⊆ domβ and

αβ−1 ∩ (domα× domα) ⊆ αα−1.

Consequently, there are two obvious questions: is there an algebraic formula-
tion of Ω on any inverse semigroup? And, does the Vagner-Preston embedding
preserve that formulation of Ω? To answer these questions, we define a relation
≪ on any inverse semigroup S by

a ≪ b if and only if aa−1 ≤ bb−1, a−1a ≤ b−1b and ab−1.aa−1 ≤ aa−1.

For the proof of the next three results, recall that ≤ is both left and right
compatible on S and that x ≤ y in S implies x−1 ≤ y−1 (see [3, Proposition
V.2.4]).

From now on, the semigroup S and the set X we consider can be finite or
infinite.

Theorem 12. Let S be an inverse semigroup. Then ≪ is a partial order on
S which contains ≤. Also, a ≪ b implies a−1 ≪ b−1.

Proof. Clearly≪ is reflexive, and it contains≤ since a ≤ b implies aa−1 ≤ bb−1,
a−1a ≤ b−1b and ab−1 ≤ bb−1, hence ab−1aa−1 ≤ bb−1aa−1 = aa−1. Suppose
a ≪ b and b ≪ a. That is, aa−1 = bb−1, a−1a = b−1b and

ab−1.aa−1 ≤ aa−1, ba−1.bb−1 ≤ bb−1.



122 BOORAPA SINGHA, JINTANA SANWONG, AND ROBERT PATRICK SULLIVAN

Then ab−1 = ab−1.bb−1 = ab−1.aa−1 ≤ aa−1 and similarly ba−1 ≤ bb−1. Thus,
taking inverses, we also have ba−1 ≤ aa−1 and ab−1 ≤ bb−1. Hence

b = bb−1.b ≥ ab−1.b = a.a−1a = a

and similarly b ≤ a, so ≪ is antisymmetric. To show ≪ is transitive, suppose
a, b, c ∈ S and

aa−1 ≤ bb−1 ≤ cc−1, a−1a ≤ b−1b ≤ c−1c,

ab−1.aa−1 ≤ aa−1, bc−1.bb−1 ≤ bb−1.

Then a = a.a−1a ≤ ab−1b , so ac−1 ≤ ab−1bc−1 and hence

ac−1.aa−1 ≤ ab−1bc−1.aa−1 ≤ ab−1.bc−1.bb−1 ≤ ab−1.bb−1 = ab−1.

Therefore, multiplying on the right, we get ac−1.aa−1 ≤ ab−1.aa−1 ≤ aa−1.

Finally, ab−1.aa−1 ≤ aa−1 is equivalent to ab−1a ≤ a and to a−1ba−1 ≤ a−1,
and hence to a−1(b−1)−1.a−1a ≤ a−1a. Thus, we easily see that, if a ≪ b, then
a−1 ≪ b−1. □

Theorem 13. ≪ equals Ω on I(X).

Proof. Let α, β ∈ I(X) and recall that ≤ equals ⊆ on I(X). It is easy to see
that domα ⊆ domβ if and only if αα−1 = iddomα ⊆ iddomβ = ββ−1, and
Xα ⊆ Xβ if and only if α−1α = idXα ⊆ idXβ = β−1β. Thus, it remains to
show that

(5) αβ−1 ∩ (domα× domα) ⊆ αα−1 if and only if αβ−1 ◦ αα−1 ⊆ αα−1.

In fact, if αβ−1 ∩ (domα × domα) ⊆ αα−1 and (x, y) ∈ αβ−1 ◦ αα−1, then
(x, y) ∈ αβ−1 and x, y ∈ domα, so (x, y) ∈ αβ−1 ∩ (domα×domα) and hence
(x, y) ∈ αα−1: that is, the containment on the left of (5) implies the one on the
right. Conversely, if αβ−1◦αα−1 ⊆ αα−1 and (x, y) ∈ αβ−1∩(domα×domα),
then (x, y) ∈ αβ−1 and (y, y) ∈ αα−1, so (x, y) ∈ αβ−1◦αα−1 and hence x = y:
that is, the reverse implication in (5) also holds. □

Theorem 14. Let S be an inverse semigroup and a, b ∈ S. Then a ≪ b in S
if and only if ρa ≪ ρb in I(S).

Proof. First recall that, for each a ∈ S, ρa−1 = ρ−1
a (see [3, Theorem V.1.10]).

By Theorem 11, we have aa−1 ≤ bb−1 if and only if ρaρ
−1
a = ρaa−1 ≤ ρbb−1 =

ρbρ
−1
b . Similarly, we deduce that a−1a ≤ b−1b if and only if ρ−1

a ρa = ρa−1a ≤
ρb−1b = ρ−1

b ρb, and ab−1 · aa−1 ≤ aa−1 if and only if ρaρ
−1
b ◦ ρaρ

−1
a =

ρab−1·aa−1 ≤ ρaa−1 = ρaρ
−1
a . Hence a ≪ b if and only if ρa ≪ ρb. □

As already noted, ≤ is left and right compatible on any inverse semigroup,
but this is not true for Ω on I(X). For convenience, we quote [11, Theorem 3.6]
and, for comparison with what follows, we provide a slightly different proof of
that result.
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Theorem 15. If γ ∈ I(X) is non-zero, then
(a) γ is left compatible with Ω on I(X) if and only if γ−1γ = idX ,
(b) γ is right compatible with Ω on I(X) if and only if γγ−1 = idX .

Proof. For (a), suppose γ is left compatible with Ω and aγ = x. There is
nothing to prove if |X| = 1, so we assume |X| ≥ 2 and choose y ̸= x in X.
Now define

α =

(
x
x

)
, β =

(
y x
x y

)
.

Clearly, domα ⊆ domβ and ranα ⊆ ranβ. Also, αβ−1 = xy and αα−1 = xx,
so αβ−1 ◦ αα−1 = ∅ ⊆ αα−1, and thus (α, β) ∈ Ω. Therefore, (γα, γβ) ∈ Ω,
where γα = ax, so x ∈ ran γβ and hence y ∈ ran γ. Since y is arbitrary, we
conclude that ran γ = X. The converse is the same as in the proof of [11,
Theorem 3.6(a)], and the proof of (b) is similar. □

Suppose S is an inverse semigroup with zero 0 and identity 1, and let M(S)
denote the set of non-zero idempotents in S which are minimal under ≤. We
say S is right-pointed if M(S) ̸= ∅ and S has the following properties.

(R1) for each g ∈ S, if g−1gx = 0 for all x ∈ M(S), then g−1g = 0,

(R2) for each g ∈ S, if g−1gx ̸= 0 for all x ∈ M(S), then g−1g = 1, and

(R3) for each x, y ∈ M(S), there exists b ∈ S such that x ≪ b and bxby = y.

Lemma 5. Let S be a right-pointed inverse semigroup and suppose g ∈ S is
non-zero. Then g is left compatible with ≪ if and only if g−1g = 1.

Proof. We first note that in any inverse semigroup S, if aa−1 ≤ bb−1, then
g.aa−1.g−1 ≤ g.bb−1.g−1 (by left and right compatibility of ≤), and so ga(ga)−1

≤ gb(gb)−1. Also, ab−1.aa−1 ≤ aa−1 implies

a(gb)−1ga(ga)−1=ab−1.g−1g.aa−1.g−1=ab−1.aa−1.g−1≤aa−1.g−1=a(ga)−1.

Hence, by premultiplying this inequality by g, we obtain ga(gb)−1ga(ga)−1 ≤
ga(ga)−1.

Now suppose g is left compatible with ≪. Since g ̸= 0, (R1) implies that
g−1gx ̸= 0 for some x ∈ M(S), and so gx ̸= 0. Also, by (R3), for each
y ∈ M(S), there exists b ∈ S such that x ≪ b and bxby = y. Then gx ≪ gb,
so (gx)−1gx ≤ (gb)−1gb. If (gx)−1gx = 0, then gx = 0, a contradiction. So,
0 ̸= (gx)−1gx ≤ x and, by the minimality of x under ≤, we deduce that
(gx)−1gx = x. Now, xby ̸= 0 and, since ≤ is right compatible,

xby = x.xby ≤ b−1g−1gb.xby = b−1.g−1gy.

Hence, g−1gy ̸= 0 for each y ∈ M(S), and so g−1g = 1 by (R2). Conversely,
if g−1g = 1 and a−1a ≤ b−1b, then (ga)−1ga = a−1a ≤ b−1b = (gb)−1gb, and
this completes the proof. □
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Example 3. It is easy to see that the non-zero minimal idempotents of (I(X),
≤) are precisely the constant idempotents in I(X) (compare [7, Theorem 13]
for P (X) under ≤). Thus, I(X) clearly satisfies (R1) and (R2). Also, the
proof of Theorem 15(a) shows that I(X) satisfies (R3). However, although the
set E of idempotents in I(X) is an inverse semigroup which satisfies (R1) and
(R2), it does not satisfy (R3) if |X| ≥ 2. This is because the non-zero minimal
elements of (E,≤) are the constants in E. Hence, if xx, yy ∈ E are distinct,
then βxxβyy = βxxyy = ∅ for each β ∈ E, so βxxβyy ̸= yy.

To determine conditions under which ≪ is right compatible, we say S is
left-pointed if M(S) ̸= ∅ and S has the following properties.

(L1) for each g ∈ S, if xgg−1 = 0 for all x ∈ M(S), then gg−1 = 0,

(L2) for each g ∈ S, if xgg−1 ̸= 0 for all x ∈ M(S), then gg−1 = 1, and

(L3) for each x, y ∈ M(S), there exists b ∈ S such that x ≪ b and ybxb = y.

Lemma 6. Let S be a left-pointed inverse semigroup and suppose g ∈ S is
non-zero. Then g is right compatible with ≪ if and only if gg−1 = 1.

Proof. Clearly, a−1a ≤ b−1b always implies (ag)−1ag ≤ (bg)−1bg. Also, if
ab−1.aa−1 ≤ aa−1, then ab−1a ≤ a and so

ag(bg)−1.ag(ag)−1 = a.a−1a.gg−1.b−1a.g(ag)−1

= agg−1.a−1.ab−1a.g(ag)−1

≤ agg−1.a−1a.g(ag)−1 = ag(ag)−1.

The rest of the proof is the dual of that for Lemma 5. That is, we start with
xg ̸= 0 for some x ∈ M(S) and observe that 0 ̸= xg(xg)−1 ≤ x. Then, for each
y ∈ M(S) and some b ∈ S, we have

ybx = ybx.x ≤ ybx.bgg−1b−1 = ygg−1.b−1

and the remaining details follow like before. □

Remark 2. In fact, S is right-pointed if and only if it is left-pointed, and
thus Lemmas 6 and properties (L1)−(L3) provide an algebraic formulation of
Lemma 5 for what we may call pointed inverse semigroups. To see this, first
note that (R1) is equivalent to the statement:

(R1.1) for each g ∈ S, if gx = 0 for all x ∈ M(S), then g = 0.

Now, if (R1) holds and xgg−1 = 0 for all x ∈ M(S), then xg = 0, so
g−1x = 0 for all x ∈ M(S), and hence (R1.1) implies g−1 = 0: that is, (R1)
implies (L1). Likewise, (R2) is equivalent to

(R2.1) for each g ∈ S, if gx ̸= 0 for all x ∈ M(S), then g−1g = 1.

Now, if (R2) holds and xgg−1 ̸= 0 for all x ∈ M(S), then xg ̸= 0, so
g−1x ̸= 0 for all x ∈ M(S), and hence (R2.1) implies (g−1)−1g−1 = 1: that
is, (R2) implies (L2). Finally, if (R3) holds and x, y ∈ M(S), then there exists
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b ∈ S such that x ≪ b and bxby = y. Hence, x ≪ b−1 by Theorem 12, where
b−1 ∈ S and yb−1xb−1 = y: that is, (R3) implies (L3). Clearly, the converse of
each of these implications is also true.

Theorem 16. If ≪ is right (or left) compatible on an inverse semigroup S,
then ≪ equals ≤.

Proof. We know ≤ is contained in ≪. Thus, we need only show that, if ≪ is
right compatible and a ≪ b, then a ≤ b. If a ≪ b, then

(6) aa−1 ≤ bb−1, a−1a ≤ b−1b and ab−1.aa−1 ≤ aa−1.

From the proof of Lemma 5, we know the first inequality above is always left
compatible. In addition, the third inequality is equivalent to ab−1a ≤ a and
to a−1ba−1 ≤ a−1. Therefore, by supposition, ag(ag)−1 ≤ bg(bg)−1 for each
g ∈ S, and hence (4) implies

(7) agg−1a−1.bgg−1b−1 = agg−1a−1.

In particular, if g = a−1 in (7), then, from (6), we obtain

(8) aa−1 = aa−1a.a−1ba−1.ab−1 ≤ a.a−1.ab−1 = ab−1.

Hence, post-multiplying this inequality by a, we obtain a ≤ ab−1a and it follows
that ab−1a = a. Hence, ab−1.ab−1 = ab−1. Now, ab−1 = aa−1.ab−1 where ab−1

is an idempotent, so ab−1 ≤ aa−1 and we conclude from (8) that ab−1 = aa−1.
That is, a ≤ b and we have shown that, if ≪ is right compatible, then ≪ equals
≤. Likewise, if ≪ is left compatible, then the second inequality in (6) is left
compatible with all g ∈ S, and an argument similar to the one above shows
that a−1a ≤ a−1b. Then, using the fact that a−1b(a−1b)−1 ≤ a−1a, we deduce
that a−1b = a−1a and thus a ≤ b by [3, Proposition V.2.2]. □
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