• Title/Summary/Keyword: Inverse Transform

Search Result 465, Processing Time 0.027 seconds

Distribution of Votaw's $\lambda_1$(mvc) Criterion

  • Nagar, D.K.;Gupta, A.K.
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.303-323
    • /
    • 1994
  • In this paper, distribution of Votaw's $\lambda_1$(mvc) criterion has been obtained using inverse Mellin transform, residue theorem and properties of special functions.

  • PDF

Inverse-Orthogonal Jacket-Haar and DCT Transform (Inverse-Orthogonal Jacket-Haar, DCT 변환)

  • Park, Ju Yong;Khan, Md. Hashem Ali;Kim, Jeong Su;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.30-40
    • /
    • 2014
  • As the Hadamard transform can be generalized into the Jacket transform, in this paper, we generalize the Haar transform into the Jacket-Haar transform. The entries of the Jacket-Haar transform are 0 and ${\pm}2^k$. Compared with the original Haar transform, the basis of the Jacket-Haar transform is general and more suitable for signal processing. As an application, we present the DCT-II(discrete cosine transform-II) based on $2{\times}2$ Hadamard matrix and HWT(Haar Wavelete transform) based on $2{\times}2$ Haar matrix, analysis the performances of them and estimate them via the Lenna image simulation.

A Fast IFFT Algorithm for IMDCT of AAC Decoder (AAC 디코더의 IMDCT를 위한 고속 IFFT 알고리즘)

  • Chi, Hua-Jun;Kim, Tae-Hoon;Park, Ju-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.214-219
    • /
    • 2007
  • This paper proposes a new IFFT(Inverse Fast Fourier Transform) algorithm, which is proper for IMDCT(Inverse Modified Discrete Cosine Transform) of MPEG-2 AAC(Advanced Audio Coding) decoder. The $2^n$(N-point) type IMDCT is the most powerful among many IMDCT algorithms, however it includes IFFT that requires many calculation cycles. The IFFT used in $2^n$(N-point) type IMDCT employ the bit-reverse data arrangement of inputs and N/4-point complex IFFT to reduce the calculation cycles. We devised a new data arrangement method of IFFT input and $N/4^{n+1}$-type IFFT and thus we can reduce multiplication cycles, addition cycles, and ROM size.

Performance Comparison of OFDM Based on Fourier Transform and Wavelet OFDM Based on Wavelet Transform (웨이블릿 변환 기반의 Wavelet-OFDM 시스템과 푸리에 변환 기반의 OFDM 시스템의 성능 비교)

  • Lee, Jungu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Orthogonal frequency division multiplexing(OFDM) is a multicarrier modulation(MCM) system that enables high-speed communications using multiple carriers and has advantages of power and spectral efficiency. Therefore, this study aims to complement the existing shortcomings and to design an efficient MCM system. The proposed system uses the inverse discrete wavelet transform(IDWT) operation instead of the inverse fast Fourier transform(IFFT) operation. The bit error rate(BER), spectral efficiency, and peak-to-average power ratio(PAPR) performance were compared with the conventional OFDM system through the OFDM system design based on wavelet transform. Our results showed that the conventional OFDM and Wavelet-OFDM exhibited the same BER performance, and that the Wavelet-OFDM using the discrete Meyer wavelet had the same spectral efficiency as the conventional OFDM. In addition, all systems of Wavelet-OFDM based on various wavelets confirm a PAPR performance lower than that of conventional OFDM.

8×8 HEVC Inverse Core Transform Architecture Using Multiplier Reuse (곱셈기를 재사용하는 8×8 HEVC 코어 역변환기 설계)

  • Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.570-578
    • /
    • 2013
  • This paper proposed an $8{\times}8$ HEVC inverse core transform architecture reusing multipliers. In HEVC core transform, processing of lower size block is identical with even part of upper size block. So an $8{\times}8$ core transform architecture can process both $8{\times}8$ and $4{\times}4$ core transforms. However, when $8{\times}8$ core transform architecture is exploited, frame processing time doubles in $4{\times}4$ core transform, since $8{\times}8$ and $4{\times}4$ core transforms concurrently process 8 and 4 pixels, respectively. In this paper, a novel inverse core transform architecture is proposed based on multiplier reuse. It runs as an $8{\times}8$ inverse core transformer or two $4{\times}4$ inverse core transformer. Its frame processing time is same in $8{\times}8$ and $4{\times}4$ core transforms, and reduces gate counts by 12%.

An Efficient Hardware Design for Scaling and Transform Coefficients Decoding (스케일링과 변환계수 복호를 위한 효율적인 하드웨어 설계)

  • Jung, Hongkyun;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2253-2260
    • /
    • 2012
  • In this paper, an efficient hardware architecture is proposed for inverse transform and inverse quantization of H.264/AVC decoder. The previous inverse transform and quantization architecture has a different AC and DC coefficients decoding order. In the proposed architecture, IQ is achieved after IT regardless of the DC or AC coefficients. A common operation unit is also proposed to reduce the computational complexity of inverse quantization. Since division operation is included in the previous architecture, it will generate errors if the processing order is changed. In order to solve the problem, the division operation is achieved after IT to prevent errors in the proposed architecture. The architecture is implemented with 3-stage pipeline and a parallel vertical and horizontal IDCT is also implemented to reduce the operation cycle. As a result of analyzing the proposed ITIQ architecture operation cycle for one macroblock, the proposed one has improved by 45% than the previous one.

Designing a Microphone Array for Acoustical Inverse Problems (음향학적 역문제를 위한 마이크로폰의 정렬방법)

  • Kim, Youngtea
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1E
    • /
    • pp.3-9
    • /
    • 2004
  • An important inverse problem in the field of acoustics is that of reconstructing the strengths of a number of sources given a model of transmission paths from the sources to a number of sensors at which measurements are made. In dealing with this kind of the acoustical inverse problem, strengths of the discretised source distribution can be simply deduced from the measured pressure field data and the inversion of corresponding matrix of frequency response functions. However, deducing :he solution of such problems is not straightforward due to the practical difficulty caused by their inherent ill-conditioned behaviour. Therefore, in order to overcome this difficulty associated with the ill-conditioning, the problem is replaced by a nearby well-conditioned problem whose solution approximates the required solution. In this paper a microphone array are identified for which the inverse problem is optimally conditioned, which can be robust to contaminating errors. This involves sampling both source and field in a manner which results in the discrete pressures and source strengths constituting a discrete Fourier transform pair.

A Numerical Method for One-dimensional Inverse Heat Conduction Problem Using Laplace Transform (라플라스 변환을 이용한 1차원 열전도의 수치해석)

  • Shin, Woon-Chul;Bae, Sin-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2007
  • An numerical method to estimate thermal diffusivity has been developed for one-dimensional unsteady heat conduction problem, when the temperatures are know at two positions in a semi-infinite body. Using the closed form solution which has already derived an explicit solution for the inverse problem for one-dimensional transient heat conduction using Laplace transform technique, we first estimate the surface temperature. The thermal diffusivity can be estimated by using the estimated surface temperature and measured temperatures, which include some uncertainties. The estimated surface heat flux and thermal diffusivity are found to be in good agreement with those of the experimented conditions. This method will be extended to the simultaneous measurement of thermal diffusivity and thermal conductivity.

Audio Source Separation Method based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part II: A Study on the Beamspace Transform Algorithms (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part II: 빔공간-변환 기법에 대한 고찰)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.332-339
    • /
    • 2012
  • Beamspace transform algorithm transforms spatial-domain data - such as x, y, z dimension - into incidence-angle-domain data, which is called beamspace-domain data. The beamspace transform method is generally used in source localization and tracking, and adaptive beamforming problem. When the beamspace transform method is used in multichannel audio source separation, the inverse beamspace transform is also important because the source image have to be reconstructed. This paper studies the beamspace transform and inverse transform algorithms for multichannel audio source separation system, especially for the beamspace-domain multichannel NMF algorithm.