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Abstract

An important inverse problem in the field of acoustics is that of reconstructing the strengths of a number of sources given 
,i model of transmission paths from the sources to a number of sensors at which measurements are made. In dealing with 
:his kind of the acoustical inverse problem, strengths of the discretised source distribution can be simply deduced from the 
measured pressure field data and the inversion of corresponding matrix of frequency response functions. However, deducing 
■he solution of such problems is not straightforward due to the practical difficulty caused by their inherent ill-conditioned 
behaviour. Therefore, in order to overcome this difficulty associated with the ill-conditioning, the problem is replaced by a 
aearby well-conditioned problem whose solution approximates the required solution. In this paper a microphone array are 
identified for which the inverse problem is optimally conditioned, which can be robust to contaminating errors. This 
involves sampling both source and field in a maimer which results in the discrete pressures and source strengths constituting 
a discrete Fourier transform pair.
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I. Introduction

The principal purposes of source identification and 
quantification are to aid the selection of appropriate and 
cost-effective noise control, and to predict the noise in 
regions other than the measurement region. The application 
o f source identification and, more generally, the 
njconstruction of acoustic source distributions from 
measurements at field points, has been a point of interest 
f»)r many acousticians in recent years. Solution of the 
discrete inverse problem in acoustics can yield estimates of 
acoustic sou호ce strength from measurements of acoustic 
pressure in the radiated field. The basis of an approach to a 
typical inverse problem in acoustics is illustrated in Figure 
1, which is a simple example of a free field radiation
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problem associated with a vibrating planar surface where 
no other sources or obstacles exist in the exterior region. 
The figure shows a diagrammatic representation of both the 
real source and measurement array, and the discretised 
model sources and modelled measurement array. Here, 
when it is assumed that the real source strength distribution 
is considered to consist of a finite number N of discrete 
elements (where, the source strengths comprise a complex 
vector q), the modelled acoustic pressures p at the same 
number of discrete field points as model sources can be 
written in the discrete matrix form p = Gq , where the 
matrix G is assumed to be known from the model and 
represents the complex frequency response functions. The 
matrix G relates the complex vector of the model acoustic 
pressures p to the assumed complex vector of the discrete 
source distribution q.

However, in practical applications contaminating errors 
of various kinds are inevitable. As illustrated in Figure 1, 
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these errors include noise due to measurement 
contamination of the complex acoustic pressure p and 
errors involved in the model representation of the real 
source distribution. When assuming that the real source 
distribution produces acoustic pressures measured at a 
finite number N of receiver positions where the complex 
pressures detected comprise the elements of the vector p, 
the difference between the model pressures p and the 
measured pressures p is expressed as the vector of complex 
errors. This is given by e = p- P- Therefore, the measured 
acoustic pressures p at the discrete field points can be 
represented by

p = Gq + e- (1)

Here, the estimate of the model source strength vector q is 
deduced by minimising the error criterion (which is also 
called the cost function). This is defined by 
j = ||e||2 = ||Gq -p||2, where || || denotes the 2-norm. Finally, 
the least squares estimate is given by[l, 2]

q = G+p, (2)

where the matrix G+ =[GHG]'!GH is the 'pseudo inverse' 
of the matrix G, which reduces to G+ = G"1 when the 
matrix G has a square dimension and is non-singular matrix 
(which is guaranteed if the matrix G is positive definite). 
The superscript H denotes Hermitian transpose.

For dealing with inverse problems of the type described 
here, it is very useful to introduce the SVD as the primary 
analytical tool. The usefulness of SVD stems from the fact 

that the complex matrix G (which, for this case, is assumed 
to be square but the more general case is discussed in 
references[l-2]) can be decomposed into the following 
product of the three matrices[3],

N
G = USVh =2Lu,.<t;v*1， (3)

i=]

where the matrix U is a matrix of left singular vectors u. af 
the matrix G, and the matrix V is a matrix of right singular 
vectors of the matrix G. Both matrices U and V are 
unitary and have the properties uH = V1 and VH = V^1 . 
The TV x TV matrix S is simply diagonal; matrix whose 
diagonal elements <7. comprise the singular values of the 
matrix G (i.e., ax>a2>..... >crN >0)- By substituting the
transformed equation (3) provided by the SVD into 
equation (2), and by using the orthonormal properties of the 
unitary matrices U and V, the least squares estimation of 
the acoustic source strength can be written as

(1="*1尹^二£쁘호%, (4)

where the matrix S+ is the pseudo inverse of the matrix S 
and is given by diagd/^,l/a2,•,…시%、). As can be seen 
in equation (4), the very small singular values (compared to 
the largest singular value ’ ) of the matrix S to be 
inverted can produce large quantities of elements in the 
matrix S+. This effect associated with the small singular 
values of the matrix G will introduce large errors into the 
solution deduced.

The most important attribute of the matrix G relating the 
behaviour of the small singular values is the condition 
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numb아* x(G) of the matrix. This is given by [3]

x(G) 네 G||||G-||. ⑸

This represents the ration between the largest and 
smallest nonzero singular values of the matrix G. The 
importance of the condition number x(G) results from the 
fact that it can be a measure of the sensitivity of the 
scdution to errors in the matrix G itself or in the measured 
pressures p. For example, by using various properties of 
matrix norms, if the complex vector p changes to p+Sp, 
the corresponding solution becomes q+ Sq and then G 
(뎌+ Sq) = p+Jp - The ratio of the norms of the relative 
changes can be shown to satisfy the inequality [3]

"에 <ZG)
〕q『⑹

1羽. 
TpT (6)

Here, small perturbations in the complex vector p and the 
n atrix G to be inverted are amplified in the complex vector 
q by an amount directly proportional to the condition 
number ^(G) of the matrix G. Thus, the matrix G is called 
iL- or well-conditioned according to x(G) being large or 
small. Hence when the matrix G has unit condition number 
ii. uncertain circumstances, the associated inverse problem 
is very easy to solve and the strengths of the elementary 
sources can be reliably estimated from the inversion of the 
Green function matrix G.

However, in practice if one wants to reconstruct precise 
ajid detailed source distribution by means of an approach 
based on the SVD considered in this paper, a real source 
needs to be discretised with a great number of modelled 
sources as many as possible and measurements have to be 
undertaken at least at the same number of sensors as 
ntodelled sources. In such cases, the acoustical inverse 
problem generally appear to be best conditioned when the 
mimber of sources and sensors are small[l, 2]. In other 
words, as the number of modelled sources and sensors 
increase, in general, the problem becomes very poorly 
conditioned and resulting in producing an inaccurate 
solution. In order to overcome the ill-condition, some 
numerical techniques are used[l-2]. However, the use of 
rugularisation often suppresses the effect of small singular 
values in the frequency response function matrix to be 

inverted and these are in turn often associated with high 
spatial frequencies of the source distribution. Thus the 
numerical process produces a useful estimate of the acoustic 
source strength distribution but with a limited spatial 
resolution. Furthermore, unfortunately, the inter-source 
spacing of modelled sources for producing successful 
reconstruction is limited by the half-wavelength, even when 
prior knowledge of source distribution is revealed[2]. 
Therefore, it is the purpose of this paper to identify this 
particular condition in a simple 2D case and extend the 
result of this potentially useful observation to the 3D case.

II. The 2D Radiation Pro이em

Consider a typical radiation problem with a finite 
vibrating plate as shown in Figure 2. In such cases, it 
follows from the Rayleigh integral and the appropriate two- 
dimensional Green function that the far field acoustic 
pressure can be expressed as a spatial Fourier transform of 
the associated source distribution. This relationship is valid 
fbr 秋？ 1 can be written as [4]]

p(k) = Gc (kR) \ uz (x}e^dx 5 (，)

—00

where Gc(kR) = a)poe~jkR/IttR (where the wavenumber 
k = c® where is the angular frequency and c0 is the 
sound speed) and is the density. u2(x) is the velocity 
normal to the x-axis and the wavenumber variable 
/ = * sin 0. Equivalently, sensors at the radial distance R 
can be spaced at equal increments of = A: sin as 
depicted in Figure 3(a).

Figure 2. Continuers far field pressures on the hemi-cylinder 
with radius R.
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(a) The far-field linear sensor array with equal inter-sensor spacing

r A

(b) Variation of the condition number for the hemi- 

cylindrical sensor array (solid line) and the far-field 

linear sensor array (dotted line) where, N denotes the 
number of model sources and sensors

for the hemi- cylindrical sensor array.

Figure 3. The hemi-cylindrical sensor array and the far-field linear sensor array, when /? = 10 rss .

In order to consider how the sensor array can be 
optimally spaced, one must firstly understand the 
relationship between the spatial Fourier transform of the far 
field data and the spatial Fourier transform of the source 
distribution. Similarly, by the analogous argument to that 
given for the sampling of time histories (see, for example, 
reference[5] for a full discussion), the discrete spati사 

Fourier transform of a source distribution of a finite length 
can be deduced. Now, as depicted in Figure 3 (a), assume 
that only N points have non-zero source strength in the 
interval [~Ls/2, Ls/2] and these points are equally spaced 
with an increment of 上(=Ls/N) • The sainpling points in 
f-Ls/2, 4/2] are defined as

늫외 +吼, « = 0, 1, .....,N-1 (8)

In this case, the continuous variable Uz(x)is replaced by 
the discrete variable uz(xn), and then the discrete Fourier 
spectrum of the spatially sampled source strength 
distribution u2(xn) can be expressed in the form

(9)
，、 1 NT ."=烏切’

where U2(k) is a sequence of length N. Now note that the 
spatial frequency range of k between ~k and k can be split 
into N samples for evaluation of Us(k) at N specific values 
of spatial frequencies with an increment《2찌N%. This in 
turn implies that 2jr/Nrss =2A：/A^(= M) from which it

follows that rss = 2/2 since k = 2찌人. Therefore, the 
Fourier spectrum at each of mQ찌NrQ values of the 
spatial frequency, where m is the index associated with 
each discrete spatial frequency chosen (which is defined as 
m = 0, 1, ..... , N-l), can be written as

1 NA
• (10)

Thus, using the discrete Fourier spectrum of the spatially 
sampled source distribution given by equation (10), the far 
field acoustic pressure in equation (7) can be written as

Pg斜 = G。(狀)板'書 奴째M， (11)
n=0 JN

which demonstrates that they are a discrete Fourier 
transform pair[6]. Note that this is accomplished by 
sampling the far field pressure at M equal increments of 
sin0 . In matrix terms the above equation can be 
writtenp = (拔)Wu, where 

W = r,s = l,2,••…,N， (12)

where w = e"찌" and N denotes the number of discretised 

points. In equation (12), W is the Fourier matrix which has 
singular values that are all unity [3], and thus the condition 
number of the matrix W has a ratio of maximum to 
minimum singular value of unity.
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Figure 3(b) shows that the conditioning of the matrix 
C 9C(= Gc(jt7?)w) for the hemi-cylindrical sensor array 
which has the discrete Fourier transform relationship with 
the spatially sampled source distribution as described in 
above, when the sensor array is placed in the far field (for 
example, when rms =10\5). As illustrated in this figure, by 
由e adoption of the far-field linear sensor array depicted in 
Figure 3(a) the conditioning of the matrix G” is worse in 
a wide region of rss/A as the number of the assumed 
sources increases. The sensor array is located at the 
distance R from the sources with the same inter-sensor 
spacing rmm as that of the hemi-cylindrical sensor array. 
니。wever, the conditioning of the matrixG^ for the hemi- 
cylindrical sensor array becomes optimal (i.e., has a 
condition number of unity) when 上 /;I = 0.5, irrespective of 

number of sources and sensors assumed. In other words, 
& hemi-cylindrical sensor array will have the least 
sensitivity to contaminating errors when ^/2 = 0.5, and 
tiw errors resulting from its inversion defined in equation 
(4) are therefore at a minimum. This may be the case in 
particular in uncertain circumstances which usually occur 
due to practical difficulties in obtaining prior knowledge of 
either noise contamination or the source distribution.

UH . The 3D Radiation Problem

It has been noted in a previous section that, for a 
particular 2D acoustic radiation problem, the matrix of 
Green functions relating the sampled far field acoustic 
pressure to the strengths of a discrete array of elementary 
acoustic sources has unit condition number at a certain

Figure 4. Sensor points on the hemisphere of radius R.

frequency. The associated inverse problem is thus very 
easy to solve at this frequency and the strengths of the 
elementary sources can be reliably estimated from the 
inversion of the Green function matrix. It is valuable to 
explore this relationship further and extend the result of this 
potentially useful observation to the 3D case.

Consider a three-dimensional example with the set of 
planar sources. The three dimensional relationship between 
the spatial Fourier transform of the far field acoustic 
pressure on the hemisphere with radius R and the spatial 
Fourier transform of the associated planar source 
distribution is given by Rayleigh's first integral formula,

pgJQ = G*R)■「工方尤，V)eJ(klX+k>y}dxdy， (13)

where Gs(kR) = ja)poe~jkR/IttR in the far field (i.e., for 
kR? \ ) and kx, ky are given in terms of spherical 
coordinates, i.e., kx=k cos。sin 0 and ky=k sin。sin 0 
(see Figure 4). The relations between the sensor position on 
the hemisphere and the projected sensor position on the source 
plane can be defined by the coordinates X = 7? cos sin
Y = Rsin^sin0 , and Z = RcosO . By using these 
relationships, the exponential term in equation (13) can be 
written as

.쓰*+更 )
^j(krx+kyy) _ eJ(Xco“sin8x+ksin°sin&y) _ RX+ Ry) (14)

Similarly to the case of the hemi-cylindrical sensor array, 
the MAyy-N planar source array is assumed to have equal 
inter-source spacings rssx (=Z*/M) and rssy (=Z@/N) in 
the intervals [-£„/2, Lj1\ and \一專2, Lsy/2] 
respe다ively and the spatial sampling points in these 
intervals are assumed to be defined as

x = —I —   I + mr , m — 0, 1,  , M -1
” "2 丿 * (15)

X, =_( "2 + a QI，...... , N-'

Under these conditions, the two-dimensional discrete 
Fourier transform of the spatially sampled source strength 
can be expressed in the form

1 M-l「1 NT 该 끄、

yj M m=0 I V JV n=0 

mXjk-云少 e R
(16)
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When the acoustic pressures are assumed to be sampled at 
equal increments of x/R and Y/R , kx = kX/R and 
ky = kY/R where X and Y define the coordinates of a field 
point in the source plane. With the sensor geometry 
depicted in Figure 5(a) consisting of an M x X array whose 
projection on the source plane is a rectangle of dimensions 
Lx and Ly (i.e., Xs =LjM and Ys^Ly/N ) then 
M = kX$ /R and ® =kYs/R - It then follows that 
2니海龄=2찌M for an inter-source spacing 丄=(&/4)人 

and also that 弘/誌二2巧〃V provided that rssy =(7?/£y)2 • 
Under these conditions, the exponential term in equation 
(16) can be written as

JmX nY ) J끄으느r , nvLy ■
J (甘』丿_丿(”5少+，心由)_ J [ RM RN ‘踱 
c — C — C (17)

where u and v are the index associated with each discrete 
spatial frequency chosen. The discrete variable u ranges from 
0 toAf-1, and v vary from 0 to -1. The superscript terms 
in equation (17) will become equal to j2^(mu/M + nv/N), 
provided that the inter-source spacings rssx and rssy are 
equal to (&/£*)人 and (&/乙卩)人 respectively. Therefore, 
the final expression for the acoustic pressures in the far 
field at each of uilrrm/M) and v(27rn/N) values of the 
spatial frequency can be written as

Far-field planar sensor array

妇心 g 꺼끄))?삆

p(u^kx, vAk ) = Gs (kR) £ £ uz(xm^n^ -----L- ----- 1-- ，m=o «=o 7n (]8)

Hemispherical sensor array
(a) The hemi-spherical sensor array and the far-field planar 

sensor array.

and the far field pressure is exactly a two dimensional 
discrete Fourier transform of the source distribution. It 
should be emphasised that the above relationship of the 
discrete Fourier transform holds only when the separation 
of acoustic sources rssx and rssy are equal respectively to 
(이L；) 人 and (r/L, 人 • Therefore, the matrix of Green 
functions relating the composite vector of far field 
pressures at the sensors to the composite vector of source 
strengths defined by

(19)

where the block matrix % is given by

W g ㈣ [w]
g #2[w] W#T[W] 

g g g g
材尸网g w竹2)"2)[w] w的2)(宀)[w] 

布尸 [W] g w甲니)(心)[W] 駅FW시)[w]

(20)

where % = 顷떼心 and each NxN sub-matrix W is equal 
to the Fourier matrix from equation (12). The block matrix 

also has the same pattern of the Fourier matrix W and, 
interestingly, the condition number is unity since all the 
singular values of the matrix WB are unity.

Similarly to the two-dimensional case, the problem does 
not become optimally conditioned, as shown in Figure 5(b), 
when using a planar type of sensor array as depicted in

(b) Variation of the condition number for the hemi-spherical sensor 

array (solid line) and the far-field planar sensor array (dotted 

line) for a range of numbers of N-by-N sensors and sources

3
Figure 5. The hemi-spherical sensor array and the far-field planar sensor array, when & = 10 rss .
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Figure 5(a). This has the same inter-sensor spacing rmm as 
that of the hemi-spherical sensor array, but the conditioning 
of the matrix GD5 for the far-filed planar sensor array 
becomes much poorer as the assumed number of sensors 
and sources increases. However, by the adoption of the 
hemi-spherical sensor array, the conditioning of the matrix 
Gds is greatly improved and becomes optimal when 
L = 시』3 (when rms =10\5), irrespective of any range of 
A/ x N sources and sensors assumed. Hence, the inversion 
of the matrix gds is consequently the least sensitive to 
e Tors under this condition.

V. Conclusions

As a result of this investigation of the factors determining 
the conditioning of the matrix G, it has been shown that the 
conditioning of the acoustical inverse problem is highly 
dependent on the geometry of sources and measurement 
positions and the frequency of the radiated sound. It has 
a so been demonstrated that the acoustical inverse problem 
can become the best conditioned when the sensor and 
source geometry is optimally arranged, even when the 
sensor array has been completely deployed to the far field. 
This will enable guidelines to be proposed for source and 
sensor geometries that reduce sensitivities to various kinds 
of errors. The source and sensor array suggested may also 
b? helpful in achieving better estimate of strengths of 
acoustic sources.

7. P.M, Morse and K.U. Ingard, Theoretical Acoustics, Princeton 
University Press, New Jersey, 1968.
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