• 제목/요약/키워드: Inverse Kinematics Systems

검색결과 102건 처리시간 0.029초

상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합 (Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints)

  • 김현철;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

웨어러블 조작기 기반 재난·재해 특수 목적기계 다관절 작업기의 가상 환경 작업시스템 구현 (Implementation of Virtual Environment System for Multi-joint Manipulator Designed for Special Purpose Equipment with Wearable Joystick used in Disaster Response)

  • 차영택;이연호;최성준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권3호
    • /
    • pp.33-46
    • /
    • 2020
  • We introduce a piece of special-purpose equipment for responding to disasters that has a dual-arm manipulator consisting of six-axis multi joints, and a master-slave operating system controlled by a wearable joystick for intuitive and convenient operation. However, due to the complexity and diversity of a disaster environment, training and suitable training means are needed to improve the interaction between the driver and equipment. Therefore, in this paper, a system that can improve the operator's immersion in the training simulation is proposes, this system is implemented in a virtual environment. The implemented system consists of a cabin installed with the master-slave operation system, a motion platform, visual and sound systems, as well as a real-time simulation device. This whole system was completed by applying various techniques such as a statistical mapping method, inverse kinematics, and a real-time physical model. Then, the implemented system was evaluated from a point of view of the appropriateness of the mapping method, inverse kinematics, the feasibility for real-time simulations of the physical environment through some task mode.

Exoskeleton 형태의 모션 캡쳐 장치를 이용한 이동로봇의 원격 제어 (Teleoperated Control of a Mobile Robot Using an Exoskeleton-Type Motion Capturing Device Through Wireless Communication)

  • 전풍우;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.434-441
    • /
    • 2004
  • In this paper, an exoskeleton-type motion capturing system is designed and implemented. The device is designed to have 12 degree-of-freedom entirely to represent human arm motions. Forward and inverse kinematics of the device are analyzed to make sure of its singular positions. With the designed model parameters, simulation studies are conducted to verify that the designed motion capturing system is effective to represent human motions within the workspace. As a counterpart of the exoskeleton system, a mobile robot is built to follow human motion restrictively. Experimental studies of teleoperation from the exoskeleton device to control the mobile robot are carried out to show feasible application of wireless man-machine interface.

스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험 (Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision)

  • 이운규;김동민;최호진;김정섭;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

로커-보기 링크 구조를 갖는 전방향 이동로봇 시스템개발 (Development of Omni-Directional Mobile Robot System with Rocker-Bogie Link Structure)

  • 강택기;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.679-685
    • /
    • 2006
  • In this paper, development of an omni-directional mobile robot with rocker-bogie link structure is addressed. The overall mobile robot system consists of the robot mechanism with embedded control architecture, wireless communication with host graphic monitoring system, and the joy stick tole-controller. In the cluttered environment with various sizes of obstacles, the omni-directionality and the traversality are required for a mobile robot, so that the robot call go around or climb over the obstacles according to the size. The mobile robot mechanism developed in this paper has both of the omni-directionality and the traversality by 4 steerable driving wheels and the 2 additional passive omni-directional wheels linked with the rocker-bogie structure. The kinematic modeling for the mobile robot is described based on the well-known Sheth-Uicker convention and the instantaneous coordinate system.

확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링 (Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates)

  • 김희국;김도형;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.

Sequential Quadratic Programming based Global Path Re-Planner for a Mobile Manipulator

  • Lee Soo-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.318-324
    • /
    • 2006
  • The mobile manipulator is expected to work in partially defined or unstructured environments. In our global/local approach to path planning, joint trajectories are generated for a desired Cartesian space path, designed by the global path planner. For a local path planner, inverse kinematics for a redundant system is used. Joint displacement limit for the manipulator links is considered in the motion planner. In an event of failure to obtain feasible trajectories, the task cannot be accomplished. At the point of failure, a deviation in the Cartesian space path is obtained and a replanner gives a new path that would achieve the goal position. To calculate the deviation, a nonlinear optimization problem is formulated and solved by standard Sequential Quadratic Programming (SQP) method.

평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용 (Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism)

  • 남윤주;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.

LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구 (A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW®)

  • 강석정;정원지;박승규;노성훈
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

인간 친화적 설계 시스템을 위한 디지털 인체 모델 구성 연구 (Digital Human Modeling for Human-centered CAD System)

  • 정문기;이건우;조현덕;김태우;;이상헌
    • 한국CDE학회논문집
    • /
    • 제12권6호
    • /
    • pp.429-440
    • /
    • 2007
  • The purpose of this research is to develop the Human-centered CAD system in which human factors can be considered during the design stage. For this system there are several issues to research, like the digital human modeling technology, the definition of interactions between human and product, the simulation of human motion when using the product, and the bio-mechanical analysis of human, etc. This paper introduces how to construct the kinematical structure of the digital human model. For our digital human model H-ANIM, the international specification of humanoid animation is referenced. And we added the skeleton geometry and the skin surfaces to our model. And it can manipulate its joints by forward kinematics. Also the IKAN inverse kinematics algorithm is adopted to support the posture prediction of the digital human model in the product environment. All of these ideas are implemented using CAD API so that we can apply these functions to the current commercial CAD systems. In this manner, the human factor issues can be effectively taken into account at the early design phase and the costs of bio-mechanical evaluation will be significantly reduced.