• 제목/요약/키워드: Inverse Kinematics

검색결과 358건 처리시간 0.036초

ROV의 운동이 고려된 수중 로봇팔의 동적 작업공간 구동 제어 (Dynamic Workspace Control of Underwater Manipulator Considering ROV Motion)

  • 심형원;전봉환;이판묵
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.460-470
    • /
    • 2011
  • This paper presents a dynamic workspace control method of underwater manipulator considering a floating ROV (Remotely Operated vehicle) motion caused by sea wave. This method is necessary for the underwater work required linear motion control of a manipulator's end-effector mounted on a floating ROV in undersea. In the proposed method, the motion of ROV is modeled as nonlinear first-order differential equation excluded dynamic elements. For online manipulator control achievement, we develop the position tracking method based on sensor data and EKF (Extended Kalman Filter) and the input velocity compensation method. The dynamic workspace control method is established by applying these methods to differential inverse kinematics solution. For verification of the proposed method, experimental data based test of ROV position tracking and simulation of the proposed control method are performed, which is based on the specification of the KORDI deep-sea ROV Hemire.

마이크로포지셔닝 병렬평행기구의 개발 및 실험 (Development and Experiment of a Micropositioning Parallel Manipulator)

  • 차영엽;윤권하
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

INFLOWS IN MASSIVE STAR FORMATION REGIONS

  • WU, YUEFANG;LIU, TIE;QIN, SHENGLI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.93-97
    • /
    • 2015
  • How high-mass stars form is currently unclear. Calculations suggest that the radiation pressure of a forming star can halt spherical infall, preventing further growth when it reaches $10M_{\odot}$. Two major theoretical models on the further growth of stellar mass have been proposed. One model suggests the merging of less massive stellar objects, and the other is through accretion, but with the help of a disk. Inflow motions are key evidence for how forming stars gain further mass to build up massive stars. Recent developments in technology have boosted the search for inflow motion. A number of high-mass collapse candidates were obtained with single dish observations, and mostly showed blue profiles. Infalling signatures seem to be more common in regions which have developed radiation pressure than in younger cores, which is the opposite of the theoretical prediction and is also very different from observations of low mass star formation. Interferometer studies so far confirm this tendency with more obvious blue profiles or inverse P Cygni profiles. Results seem to favor the accretion model. However, the evolution of the infall motion in massive star forming cores needs to be further explored. Direct evidence for monolithic or competitive collapse processes is still lacking. ALMA will enable us to probe more detail of the gravitional processes.

타이어 사이드판의 문자 가공을 위한 4축 가공 시스템 (A 4-axis NC Lettering System for the Side-wall of the Automobile Tire)

  • 이철수;박광렬
    • 산업공학
    • /
    • 제11권2호
    • /
    • pp.65-78
    • /
    • 1998
  • The letters of the automobile tire are usually engraved on the side-wall. The shape of the side-wall is a sculptured surface generated by the rotational sweeping of a profile curve. The letters laid on the side-wall are usually designed by a 2-dimensional CAD. It is impossible to machine the letters on the surface accurately by 3-axis NC machining, because the axis of cutter should be tilted to align with the normal vector of the surface. In this case. the degree of freedom for the machine is at least four. This paper describes an idea for tool path generation of a 4-axis machine by using the 2-dimensional CAD data of the letters and the surface of the side-wall. This study includes the following procedures; (1) measuring the profile of the side-wall surface and curve-fitting of the measured points. (2) the 'non-parallel projection' of the letters on the side-wall, and (3) an inverse kinematics of the 4-axis lettering machine. Procedures in this paper are programmed in C-language on Windows95 environment. With a PC based CNC controller and a 4-axis lettering machine. these are tested sucessfully for the practical use.

  • PDF

벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어 (Tracking Control of 6-DOF Shaking Table with Bell Crank Structure)

  • 전득재;박성호;박영진;박윤식;김형의
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF

운용자 중심의 차동바퀴형 모바일 로봇 조종을 위한 속도 제어 알고리즘 (Velocity Control Algorithm for Operator-centric Differential-Drive Mobile Robot Control)

  • 김동환;이동현
    • 한국산업정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.121-127
    • /
    • 2019
  • 본 논문에서는 물류창고, 제조업, 협업 로봇 등 다양한 애플리케이션에 활용되고 있는 비홀로노믹 제약을 가진 차동 바퀴형 모바일 로봇의 용이한 운용을 위한 로컬 속도 생성 제어 알고리즘을 제안한다. 기존의 차동 바퀴형 모바일 로봇 운용 방법은 운용자가 자신의 좌표계가 아닌 로봇의 좌표계를 기준으로 인지하고 로봇의 속도를 직접 생성해야 하였으며, 이로 인해 운용의 직관성이 낮아지고 업무의 효율 저하 및 사고 발생률이 증가하게 된다. 본 연구에서는 이를 개선하여 운용자가 자신의 좌표계를 기준으로 로봇을 운용할 수 있도록 한다. 제안하는 알고리즘은 실제 차동 바퀴형 모바일 로봇을 활용한 실험을 통하여 알고리즘의 효용성을 검증한다.

구난로봇을 위한 전신 기구학 제어 연구 (A Study of Whole Body Kinematic Control for a Rescue Robot)

  • 홍성일;이원석;강신천;강윤식;박용운
    • 한국군사과학기술학회지
    • /
    • 제17권6호
    • /
    • pp.853-860
    • /
    • 2014
  • This paper introduces a Korean rescue robot and presents a whole body kinematic control strategy. The mission of the rescue robot is to move and lift patients or soldiers with impaired mobility in the battlefields, hospitals and hazardous environments. In order for a robot to rescue and assist humans, reliable mobility in various environments, large load carrying capacity, and dextrous manipulability are required. For these objects the robot has variable configuration mobile platform with tracks, dual arm manipulator, and two types of grippers. The electric actuators provide the strength to lift a wounded soldier up to 120 kg using whole body joints. To control the robot with multi degree of freedom, we need to synthesize complex whole-body behaviors, and to manage multiple task primitives systematically. We are to present a whole body kinematic control methodology, and demonstrate its effectiveness through numerical simulations.

LCD 글래스 핸들링 로봇의 실시간 정적 처짐 보상 (Real-time Static Deflection Compensation of an LCD Glass-Handling Robot)

  • 조필주;김동일;김효규
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.741-749
    • /
    • 2006
  • For last couple of decades, uses of TFI-LCDs have been expanded to many FPD(Flat Panel Display) applications including mobile displays, desktop monitors and TVs. Furthermore, there has been growing demand for increasingly larger LCD TVs. In order to meet this demand as well as to improve productivity, LCD manufactures have continued to install larger-generation display fabrication facilities which are capable of producing more panels and larger displays per mother glass(substrate). As the size of mother glass becomes larger, a robot required to handle the glass becomes bigger accordingly, and its end effectors(arms) are extended to match the glass size. With this configuration, a considerable static deflection occurs at the end of the robot arms. In order to stack maximum number of mother glasses on a given footprint, the static deflection should be compensated. This paper presents a novel static deflection compensation algorithm. This algorithm requires neither measurement instrument nor additional vertical axis on the robot. It is realized by robot controller software. The forward and inverse kinematics considering compensation always guarantees a unique solution, so the proposed algorithm can be applied to an arbitrary robot position. The algorithm reduced static deflection by 40% in stationary robot state experiment. It also improved vertical path accuracy up to 60% when the arm was running at its maximum speed. This algorithm has been commercialized and successfully applied to a seventh-generation LCD glass-handling robot.

초정밀작업을 위한 6자유도 마이크로 스테이지의 개발 (Development of a 6 degrees-of-freedom micro stage for ultra precision positioning)

  • 김경찬;김수현;곽윤근
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

가상 시뮬레이션을 이용한 기동형 경계 로봇의 영상 기반 목표추적 알고리즘 검증 (Verification of Camera-Image-Based Target-Tracking Algorithm for Mobile Surveillance Robot Using Virtual Simulation)

  • 이동염;서봉철;김성수;박성호
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1463-1471
    • /
    • 2012
  • 본 논문은 3 축 영상 장치를 기존의 2 축 경계 로봇에 적용하는 설계안을 제시하고 이러한 기동형 경계 로봇의 영상 정보를 이용한 목표 추적 알고리즘을 제안하였다. 또한 가상 시뮬레이션을 이용하여 목표 추적 알고리즘을 검증하였다. 목표추적 알고리즘에서는 카메라 영상의 중심과 카메라 영상으로 포착된 목표물 중심 사이의 위치 에러를 이용하여 영상 장치의 목표 지향 벡터를 획득하고, 역기구학을 이용하여 획득한 목표 지향 벡터를 생성해 낼 수 있는 기동형 경계 로봇의 팬, 틸트 회전 요구 각도와 카메라 영상의 안정화를 위한 롤 회전 요구각도를 계산하였다. MATLAB 과 ADAMS 를 이용하여 기동형 경계 로봇의 가상 모델을 생성하고, 가상의 목표물의 움직임에 대한 가상 모델의 운동을 확인하여 영상 기반의 목표 추적 알고리즘을 검증하였다.