Browse > Article
http://dx.doi.org/10.9723/jksiis.2019.24.5.121

Velocity Control Algorithm for Operator-centric Differential-Drive Mobile Robot Control  

Kim, Dong-Hwan (금오공과대학교 전자공학부)
Lee, Dong-Hyun (금오공과대학교 IT 융복합공학과)
Publication Information
Journal of Korea Society of Industrial Information Systems / v.24, no.5, 2019 , pp. 121-127 More about this Journal
Abstract
This paper proposes an operator-centric velocity generation and control algorithm for differential-drive mobile robots, which are widely used in many industrial applications. Most of the previous works use a robot centric velocity generation and control for the operators to control the differential-drive mobile robots, which makes the robot control difficult for the operators. Such robot-centric control can cause the increase of accidents and the decrease of work efficiency. The experimental results with a real differential-drive mobile robot testbed demonstrate the efficiency of operator-centric mobile robot control.
Keywords
Differential-drive mobile robot; Nonholonomic constraints; Inverse differential mobile robot kinematics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Choset, H. M., Hutchinson, S., Lynch, K. M., Kantor, G., Burgard, W., Kavraki, L. E. and Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation, Massachusetts, MIT press.
2 Davies, T. and Jnifene, A. (2006) Multiple Waypoint Path Planning for a Mobile Robot using Genetic Algorithms, IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, July. 12-14, La Coruna, Spain, pp. 21-26.
3 Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous Localization and Mapping: Part I, IEEE Robotics & Automation Magazine, 13(2), 99-110.   DOI
4 Fox, D. (2002). KLD-sampling: Adaptive Particle Filters, Advances in Neural Information Processing Systems, December. 9-14, Vancouver, British Columbia, Canada, pp. 713 - 720.
5 Grisetti, G., Stachniss, C. and Burgard, W. (2007). Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, IEEE Transactions on Robotics, 23(1), 34-46.   DOI
6 Kim, T.-U., Lee, S.-Y., Kwon, K.-S. and Park, S.-H. (2009). Autonomous Wheelchair System using Gaze Recognition, Journal of the Korea Industrial Information Systems Research, 14(4), 91-100.
7 Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S. and Sokolsky, M. (2011). Towards Fully Autonomous Driving: Systems and Algorithms, 2011 IEEE Intelligent Vehicles Symposium(IV), June. 6-8,
8 Baden-Baden, Germany, pp. 163-168. Park, S.-H., Kim, T.-U. and Kwon, K.-S. (2008). Hand Gesture Based a Pet Robot Control, Journal of the Korea Industrial Information Systems Research, 13(4), 145-154.
9 Siegwart, R., Nourbakhsh, I. R. and Scaramuzza, D. (2004). Introduction to Autonomous Mobile Robots, Massachusetts, MIT Press.
10 Scholtz, J., Young, J., Drury, J. L. and Yanco, H. A. (2004). Evaluation of Human-robot Interaction Awareness in Search and Rescue, IEEE International Conference on Robotics and Automation, April. 26-May. 1, New Orleans, LA, USA. pp. 2327-2332.
11 Tack, H. H. and Kwon, S. G. (2014). Driving Control of Automated Guided Vehicle using Centroid of Gravity Method, Korea Industrial Information Systems Research, 19(2), 59-66.   DOI
12 Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Robotics, Massachusetts, MIT Press.
13 Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J. and Ng, A. Y. (2009). ROS: an Open-source Robot Operating System, ICRA Workshop on Open Source Software, May. 17, Kobe, Japan.