DOI QR코드

DOI QR Code

Velocity Control Algorithm for Operator-centric Differential-Drive Mobile Robot Control

운용자 중심의 차동바퀴형 모바일 로봇 조종을 위한 속도 제어 알고리즘

  • 김동환 (금오공과대학교 전자공학부) ;
  • 이동현 (금오공과대학교 IT 융복합공학과)
  • Received : 2019.08.28
  • Accepted : 2019.10.02
  • Published : 2019.10.31

Abstract

This paper proposes an operator-centric velocity generation and control algorithm for differential-drive mobile robots, which are widely used in many industrial applications. Most of the previous works use a robot centric velocity generation and control for the operators to control the differential-drive mobile robots, which makes the robot control difficult for the operators. Such robot-centric control can cause the increase of accidents and the decrease of work efficiency. The experimental results with a real differential-drive mobile robot testbed demonstrate the efficiency of operator-centric mobile robot control.

본 논문에서는 물류창고, 제조업, 협업 로봇 등 다양한 애플리케이션에 활용되고 있는 비홀로노믹 제약을 가진 차동 바퀴형 모바일 로봇의 용이한 운용을 위한 로컬 속도 생성 제어 알고리즘을 제안한다. 기존의 차동 바퀴형 모바일 로봇 운용 방법은 운용자가 자신의 좌표계가 아닌 로봇의 좌표계를 기준으로 인지하고 로봇의 속도를 직접 생성해야 하였으며, 이로 인해 운용의 직관성이 낮아지고 업무의 효율 저하 및 사고 발생률이 증가하게 된다. 본 연구에서는 이를 개선하여 운용자가 자신의 좌표계를 기준으로 로봇을 운용할 수 있도록 한다. 제안하는 알고리즘은 실제 차동 바퀴형 모바일 로봇을 활용한 실험을 통하여 알고리즘의 효용성을 검증한다.

Keywords

References

  1. Choset, H. M., Hutchinson, S., Lynch, K. M., Kantor, G., Burgard, W., Kavraki, L. E. and Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementation, Massachusetts, MIT press.
  2. Davies, T. and Jnifene, A. (2006) Multiple Waypoint Path Planning for a Mobile Robot using Genetic Algorithms, IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, July. 12-14, La Coruna, Spain, pp. 21-26.
  3. Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous Localization and Mapping: Part I, IEEE Robotics & Automation Magazine, 13(2), 99-110. https://doi.org/10.1109/MRA.2006.1638022
  4. Fox, D. (2002). KLD-sampling: Adaptive Particle Filters, Advances in Neural Information Processing Systems, December. 9-14, Vancouver, British Columbia, Canada, pp. 713 - 720.
  5. Grisetti, G., Stachniss, C. and Burgard, W. (2007). Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, IEEE Transactions on Robotics, 23(1), 34-46. https://doi.org/10.1109/TRO.2006.889486
  6. Kim, T.-U., Lee, S.-Y., Kwon, K.-S. and Park, S.-H. (2009). Autonomous Wheelchair System using Gaze Recognition, Journal of the Korea Industrial Information Systems Research, 14(4), 91-100.
  7. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S. and Sokolsky, M. (2011). Towards Fully Autonomous Driving: Systems and Algorithms, 2011 IEEE Intelligent Vehicles Symposium(IV), June. 6-8,
  8. Baden-Baden, Germany, pp. 163-168. Park, S.-H., Kim, T.-U. and Kwon, K.-S. (2008). Hand Gesture Based a Pet Robot Control, Journal of the Korea Industrial Information Systems Research, 13(4), 145-154.
  9. Siegwart, R., Nourbakhsh, I. R. and Scaramuzza, D. (2004). Introduction to Autonomous Mobile Robots, Massachusetts, MIT Press.
  10. Scholtz, J., Young, J., Drury, J. L. and Yanco, H. A. (2004). Evaluation of Human-robot Interaction Awareness in Search and Rescue, IEEE International Conference on Robotics and Automation, April. 26-May. 1, New Orleans, LA, USA. pp. 2327-2332.
  11. Tack, H. H. and Kwon, S. G. (2014). Driving Control of Automated Guided Vehicle using Centroid of Gravity Method, Korea Industrial Information Systems Research, 19(2), 59-66. https://doi.org/10.9723/jksiis.2014.19.2.059
  12. Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Robotics, Massachusetts, MIT Press.
  13. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J. and Ng, A. Y. (2009). ROS: an Open-source Robot Operating System, ICRA Workshop on Open Source Software, May. 17, Kobe, Japan.