• Title/Summary/Keyword: Inverse Jacobian

Search Result 88, Processing Time 0.025 seconds

Dynamics and Control of 2 DOF 5-bar Parallel Manipulator with Closed Chain

  • Chung, Young-Hoog;Lee, Jae-Won;Sung, Yoon-Gyeoung;Joo, Hae-Hoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.5-10
    • /
    • 2001
  • A method is proposed to obtain the Jacobian matrix of the 5 -bar parallel manipulator by employing the orthogonality between position and velocity vectors of rotating rigid-body around a fixed point. The dynamics of the 5-bar parallel manipulator is analyzed and utilized to design the computed-torque controller by developing a transformation matrix of the passive joints with respect to the active ones. In experimental demonstration, it shows that high-speed and accuracy tasks are performed by the proposed computed-torque control.

  • PDF

Study on Development of a machining robot using Parallel mechanism

  • Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki;Kyung, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • This research develops the robot for the machining work. For machining work(cutting, milling, grilling, etc.), a robot manipulator is constructed by combining a parallel and a serial mechanism to increase stiffness as well as enlarge workspace. Based on the geometric constraints, this paper develops the formulation for inverse/direct kinematics and Jacobian to design and control a robot. Workspace is also analyzed to prove the advantage of the proposed robot.

  • PDF

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

Workspace Optimization and Kinematic Performance Evaluation of 2-DOF Parallel Mechanisms

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1614-1625
    • /
    • 2006
  • This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix for each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. Finally, the kinematic optimization of the mechanisms is performed in consideration of their dexterity and rigidity. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields.

Comparison Study of 2-D OF Parallel Mechanisms: Workspace Optimization and Kinematic Performance (2자유도 병렬 기구의 비교 연구 : 작업영역 최적화 및 기구학적 성능)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeon-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1564-1572
    • /
    • 2006
  • This paper presents the kinematics and workspace optimization of the two different 2-DOF (Degrees-of-Freedom) planar parallel mechanisms: one (called 2-RPR mechanism) with translational actuators and the other (called 2-RRR mechanism) with rotational ones. First of all, the inverse kinematics and Jacobian matrix of each mechanism are derived analytically. Then, the workspace including the output-space and the joint-space is systematically analyzed in order to determine the geometric parameters and the operating range of the actuators. .Finally, the kinematic optimization of the mechanisms is performed with regards to their dexterity, stiffness and space utilization. It is expected that the optimization results can be effectively used as a basic material for the applications of the presented mechanisms to more industrial fields.

One-dimensional Inversion of Electromagnetic Frequency Sounding Data (주파수 수직 전자탐사 자료의 1차원 역산)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.180-186
    • /
    • 2003
  • We have developed an one-dimensional (ID) inversion program that can invert multiple frequency small-loop EM data from horizontal coplanar (HCP) and vertical coplanar (VCP) configurations. The inverse problem is solved using least-squares method with active constraint balancing (ACB) method and Jacobian matrix is calculated analytically. Tests using synthetic data from simple ID models indicate that conductivity and depth of each layer can be estimated properly when both real and imaginary data are used together.

Double Circuit Simultaneous Fault Analysis (이중선로의 동시사고를 고려한 상정사고해석)

  • Kim, J.U.;Moon, Y.H.;Lee, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.136-138
    • /
    • 2002
  • In this paper, we propose the analysis method of the Double Circuit Simultaneous Fault. To improve the accuracy and the promptness of the coontingency analysis, we reformed the Peterson method and extended the Sherman-Morrison equation. We also used the table of trigono -metric factor of Jacobian matrix before the fault, to compute the inverse matrix needed in the loadflow calculation.

  • PDF

An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition (속도분리를 이용한 여유자유도 로봇의 최적 경로계획)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

Hybrid position/force controller design of the robot manipulator using neural network (신경 회로망을 이용한 로보트 매니퓰레이터의 Hybrid 위치/힘 제어기의 설계)

  • 조현찬;전홍태;이홍기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.24-29
    • /
    • 1990
  • In this paper ,ie propose a hybrid position/force controller of a robot manipulator using double-layer neural network. Each layer is constructed from inverse dynamics and Jacobian transpose matrix, respectively. The weighting value of each neuron is trained by using a feedback force as an error signal. If the neural networks are sufficiently trained it does not require the feedback-loop with error signals. The effectiveness of the proposed hybrid position/force controller is demonstrated by computer simulation using a PUMA 560 manipulator.

  • PDF

An Efficient Iterative Inverse Kinematic Analysis for General Robot Manipulators Using Near Position (근접 위치를 이용한 일반적인 로봇 매니퓰레이터의 효율적인 반복적 역기구학 해석 문제)

  • 강성철;조소형;김문상;조선휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1640-1648
    • /
    • 1991
  • 본 연구에서는 이러한 편사 함수 최소화의 방법을 적용함에 있어 보다 안정된 수렴성과 계산 시간을 단축시키기 위하여 근접 위치 방법(near position method)을 개 발하여 적용하였다. 근접 위치 방법이란 이론적 해석법으로 풀기가 불가능한 기구학 을 갖는 6관절 로봇을 반복적 해석법을 사용한다는 것을 전제로 하여, 초기 위치를 목 표 위치에 가능한 근접하게 잡아서 반복 계산을 수행하는 방법으로써 로봇의 기구학적 자세에 따른 수렴의 불안정성을 방지하고, 계산 시간을 단축하는데 그 목적이 있다.