• Title/Summary/Keyword: Inundation analysis model

Search Result 216, Processing Time 0.023 seconds

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Characteristics of the Inundation and Process of Making a Flood Map According to the Levee Break Conditions in Urban Stream - Jungrang Experimental Basin - (제방붕괴조건에 따른 도시하천의 홍수범람 특성 및 홍수지도 작성 - 중랑천 시험유역을 중심으로 -)

  • Lee, Jong-Tae;Hur, Sung-Chul;Kim, Jeong-Hoi;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.383-394
    • /
    • 2006
  • This study is for the inundation damage analysis caused by levee break, and for the applicability of GIS tool to make inundation map in the Jungrang stream basin which is one of the representative urbanized area in Korea. The FLDWAV was applied to the actual flood in 1998 to calibrate the parameters, and was used under the flood conditions of 100, 200 years and PMF for the analysis of inundation caused by the levee breach. As the conditions of the levee break, the duration of break(10, 30, 60 min), the width of break(10, 20, 30m) and the location of the break are considered. We found out that the range and the volume of the inundation are strongly influenced by the location of the levee break, the break width in order. And, we compared the two processes of making the inundation map using WMS and ArcView model. The Process 1 which use only WMS has the benefit by its simplicity but there could be considerable errors in making the inundation map, while Process 2 where the ArcView model is introduced to WMS has the capability of making detailed topography map but needs more process time. This study could contribute to levee breach flood analysis and making flood map to establish the EAP(Emergency Action Plan) in the urban basin.

Analysis on inundation characteristics by compound external forces in coastal areas (연안 지역의 복합 외력에 의한 침수 특성 분석)

  • Kang, Taeuk;Sun, Dongkyun;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.463-474
    • /
    • 2021
  • The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn't appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.

Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model (H12 모형을 이용한 도시침수원인 및 침수방어벽의 효과 분석)

  • Kim, Bomi;Noh, Seong Jin;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • A severe flooding occured at a small urban catchment in Daejeon-si South Korea on July 30, 2020 causing significant loss of property (inundated 78 vehicles and two apartments) and life (one casualty and 56 victims). In this study, a retrospective analysis of the inundation event was implemented using a physically-based urban flood model, H12 with high-resolution data. H12 is an integrated 1-dimensional sewer network and 2-dimensional surface flow model supported by hybrid parallel techniques to efficiently deal with high-resolution data. In addition, we evaluated the impact of the flooding barriers which were installed after the flood disaster. As a result, it was found that the inundation was affected by a combination of multiple components including the shape of the basin, the low terrain of the inundation area located in the downstream part of the basin, and lack of pipe capacity to drain discharge from the upstream during heavy rain. The impact of the flooding barriers was analyzed by modeling with and without barriers on the high-resolution terrain input data. It was evaluated that the flood barriers effectively lower the water depth in the apartment complex. This study demonstrates capability of high-resolution physically-based urban modeling to quantitatively assess the past inundation event and the impact of the reduction measures.

A Study on the Use of Geospatial Information-Based Simulation for Preemptive Response to Water Disasters in Agricultural Land (농경지 수재해 선제적 대응을 위한 공간정보기반 시뮬레이션 활용 연구)

  • Jung, Jae Ho;Kim, Seung Hyun;Kim, Dae Jin;Yang, Seung Weon
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.52-60
    • /
    • 2022
  • Due to global warming and changes in the natural environment, flood damage to agricultural land due to wind and flood damage continues. Although disaster prevention projects have been continuously carried out since the founding of the country, progress has been insufficient compared to the sustained period, and huge costs are still being consumed. Therefore, it is necessary to use predictive simulation for pre-emptive response to inundation of farmland. In this paper, a case of immersion analysis simulation using a GIS(Geospatial Information System) based SWMM model was introduced, and the validity was confirmed through the error rate between our simulation result and the results of other models in the US and Korea. In addition, in the direction of using the simulation for agricultural land inundation, we presented various utilization methods to supplement the current agricultural land inundation-based information policy, such as the creation of flood traces. If simulation results from more regions are accumulated in the form of the flood analysis maps in the future, it is expected that they will be able to be utilized in various applications for preemptive response to and prevention of water disasters at the national level.

Urban Inundation Analysis using the Integrated Model of MOUSE and MIKE21 (MOUSE 및 MIKE21 통합모델을 이용한 도시유역의 침수분석)

  • Choi, Gye-Woon;Lee, Ho-Sun;Lee, So-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Urbanized area has complex terrain with many flow paths. Almost stormwater is drained through pipe network because most area is impervious. And overland flow from the pipe network reform the surface flow. Therefore, it should be considered the drainage system and surface runoff both in urban inundation analysis. It is analyzed by using MIKE FLOOD integrated 1 dimension - 2 dimension model about Incheon Gyo urbanized watershed and compared with the results of 1 dimension model and 2 dimension model. At the result this approach linking of 2 dimension and 1 dimension pipe hydraulic model in MIKE FLOOD give accuracy that offers substantial improvement over earlier approach and more information about inundation such as water dapth, velocity or risk of flood, because it is possible to present storage of overland flow and topographical characteristic of area.

An Optimal Sewer Layout Model to Reduce Urban Inundation (도시침수 저감을 위한 최적 우수관망 설계 모형)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.777-786
    • /
    • 2011
  • In the previous researches for storm sewer design, the flow path, pipe diameter and pipe slope were determined to minimize the construction cost. But in the sewer networks, the flows can be changed according to flow path. The current optimal sewer layout models have been focussed on satisfying the design inflow for sewer designs, whereas the models did not consider the occurrences of urban inundation from excessive rainfall events. However, in this research, the sewer networks are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the inflows in sewer pipes. Then, urban inundation can be reduced for excessive rainfall events. An Optimal Sewer Layout Model (OSLM) was developed to control and distribute the inflows in sewer networks and reduce urban inundation. The OSLM uses GA (Genetic Algorithm) to solve the optimal problem for sewer network design and SWMM (Storm Water Management Model) to hydraulic analysis. This model was applied to Hagye basin with 44 ha. As the applied results, in the optimal sewer network, the peak outflow at outlet was reduced to 7.1% for the design rainfall event with 30 minutes rainfall duration versus that of current sewer network, and the inundation occurrence was reduced to 24.2% for the rainfall event with 20 years frequency and 1 hour duration.

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.

Application of Inundation Simulation Model using GIS (GIS를 이용한 침수모의모형의 적용)

  • Kim, Sang-Min;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.314-318
    • /
    • 2001
  • The analysis of the spatial extent of flood inundation is important for flood mitigation. Geographic Information System (GIS) has advantage of analyzing spatial distributed data. Hydrologic Engineering Center's River Analsysis System(HEC-RAS) with HEC-GeoRAS was used to analyze flood inundation. HEC-GeoRAS, which is an ArcView GIS extension designed to process geospatial data for HEC-RAS, is a useful tool for storing, managing, analyzing, and displaying spatially distributed data. Rational formula and 24-hr duration probability precipitation data of Suwon meteorological station were used to estimate the flood runoff. And water profiles were calculated using the HEC-RAS model with HEC-GeoRAS. The flooded region is 8.24ha when 50-yr probability precipitation was applied and 8.8ha when 100-yr was applied to Bahlan study watershed which is located in Whasung county, Kyunggi province, having an area of $29.79km^{2}$.

  • PDF