• Title/Summary/Keyword: Intrusion Detection System

Search Result 765, Processing Time 0.035 seconds

Natural Language Interface to an Intrusion Detection System

  • Collier, T.;Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.31.1-31
    • /
    • 2001
  • Computer security is a very important issue these days. Computer viruses, worms, Trojan horses, and cracking are prevalent and causing serious damages. There are also many ways developed to defend against such attacks including cryptography and firewalls. However, it is not possible to guarantee complete security of computer systems or networks. Recently much attention has been directed to ways to detect intrusions and recover from damages. Although there have been a lot of research efforts to develop efficient intrusion detection systems, little has been done to facilitate the interaction between intrusion detection systems and users ...

  • PDF

Description of Computer System State for Intrusion Detection (침입 탐지를 위한 컴퓨터 시스템 상태 기술)

  • Kwak, Mi-Ra;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.147-149
    • /
    • 2006
  • We designed an intelligent intrusion detection scheme that works based on target system's operational states and doesn't depend on humans' analysis. As a prior work, we presents a scheme to describe computer system's operational states. For this, Hidden Markov Model is used. As input to modeling, huge amount of system audit trail including data on events occurred in target system connected to network and target system's resource usage monitoring data is used. We can predict system's future state based on current events' sequence using developed model and determine whether it would be in daniel or not.

  • PDF

Developing an Intrusion Detection Framework for High-Speed Big Data Networks: A Comprehensive Approach

  • Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4021-4037
    • /
    • 2018
  • In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.

Intrusion Detection Algorithm in Mobile Ad-hoc Network using CP-SVM (Mobile Ad - hoc Network에서 CP - SVM을 이용한 침입탐지)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • MANET has vulnerable structure on security owing to structural characteristics as follows. MANET consisted of moving nodes is that every nodes have to perform function of router. Every node has to provide reliable routing service in cooperation each other. These properties are caused by expose to various attacks. But, it is difficult that position of environment intrusion detection system is established, information is collected, and particularly attack is detected because of moving of nodes in MANET environment. It is not easy that important profile is constructed also. In this paper, conformal predictor - support vector machine(CP-SVM) based intrusion detection technique was proposed in order to do more accurate and efficient intrusion detection. In this study, IDS-agents calculate p value from collected packet and transmit to cluster head, and then other all cluster head have same value and detect abnormal behavior using the value. Cluster form of hierarchical structure was used to reduce consumption of nodes also. Effectiveness of proposed method was confirmed through experiment.

The Intelligent Intrusion Detection Systems using Automatic Rule-Based Method (자동적인 규칙 기반 방법을 이용한 지능형 침입탐지시스템)

  • Yang, Ji-Hong;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.531-536
    • /
    • 2002
  • In this paper, we have applied Genetic Algorithms(GAs) to Intrusion Detection System(TDS), and then proposed and simulated the misuse detection model firstly. We have implemented with the KBD contest data, and tried to simulated in the same environment. In the experiment, the set of record is regarded as a chromosome, and GAs are used to produce the intrusion patterns. That is, the intrusion rules are generated. We have concentrated on the simulation and analysis of classification among the Data Mining techniques and then the intrusion patterns are produced. The generated rules are represented by intrusion data and classified between abnormal and normal users. The different rules are generated separately from three models "Time Based Traffic Model", "Host Based Traffic Model", and "Content Model". The proposed system has generated the update and adaptive rules automatically and continuously on the misuse detection method which is difficult to update the rule generation. The generated rules are experimented on 430M test data and almost 94.3% of detection rate is shown.3% of detection rate is shown.

An Alert Data Mining Framework for Intrusion Detection System (침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크)

  • Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.459-466
    • /
    • 2011
  • In this paper, we proposed a data mining framework for the management of alerts in order to improve the performance of the intrusion detection systems. The proposed alert data mining framework performs alert correlation analysis by using mining tasks such as axis-based association rule, axis-based frequent episodes and order-based clustering. It also provides the capability of classify false alarms in order to reduce false alarms. We also analyzed the characteristics of the proposed system through the implementation and evaluation of the proposed system. The proposed alert data mining framework performs not only the alert correlation analysis but also the false alarm classification. The alert data mining framework can find out the unknown patterns of the alerts. It also can be applied to predict attacks in progress and to understand logical steps and strategies behind series of attacks using sequences of clusters and to classify false alerts from intrusion detection system. The final rules that were generated by alert data mining framework can be used to the real time response of the intrusion detection system.

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

Design of Efficient Intrusion Detection System using Man-Machine (Man-Mchine에 의한 효율적인 침입 탐지 시스템 설계)

  • Shin, Jang-Koon;Ra, Min-Young;Park, Byung-Ho;Choi, Byung-Kab
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.39-52
    • /
    • 1996
  • Networking revolution provides users with data and resources sharing, distributed processing, and computer communication in cyberspace. However, users may use computers as a way of unauthorized access, system destruction, and leakage of the stored data. In recent trend, incresing of hacking instances which are from domestic as well as abroad reaches to the level of seriousness. It, therefore, is required to develop a secure system for the National Depense computing resources and deploy in practice in the working field as soon as possible. In this paper, we focuss on finding the security requirements of a network and designing Intrusion Detection System using statical intrusion detection and rule-based intrusion detection analysis through accumulating audit data.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

Distributed Denial of Service Defense on Cloud Computing Based on Network Intrusion Detection System: Survey

  • Samkari, Esraa;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.67-74
    • /
    • 2022
  • One type of network security breach is the availability breach, which deprives legitimate users of their right to access services. The Denial of Service (DoS) attack is one way to have this breach, whereas using the Intrusion Detection System (IDS) is the trending way to detect a DoS attack. However, building IDS has two challenges: reducing the false alert and picking up the right dataset to train the IDS model. The survey concluded, in the end, that using a real dataset such as MAWILab or some tools like ID2T that give the researcher the ability to create a custom dataset may enhance the IDS model to handle the network threats, including DoS attacks. In addition to minimizing the rate of the false alert.