• Title/Summary/Keyword: Intrusion Classification

Search Result 113, Processing Time 0.023 seconds

Genetic Algorithm Application to Machine Learning

  • Han, Myung-mook;Lee, Yill-byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.633-640
    • /
    • 2001
  • In this paper we examine the machine learning issues raised by the domain of the Intrusion Detection Systems(IDS), which have difficulty successfully classifying intruders. There systems also require a significant amount of computational overhead making it difficult to create robust real-time IDS. Machine learning techniques can reduce the human effort required to build these systems and can improve their performance. Genetic algorithms are used to improve the performance of search problems, while data mining has been used for data analysis. Data Mining is the exploration and analysis of large quantities of data to discover meaningful patterns and rules. Among the tasks for data mining, we concentrate the classification task. Since classification is the basic element of human way of thinking, it is a well-studied problem in a wide variety of application. In this paper, we propose a classifier system based on genetic algorithm, and the proposed system is evaluated by applying it to IDS problem related to classification task in data mining. We report our experiments in using these method on KDD audit data.

  • PDF

Performance Evaluation of One Class Classification to detect anomalies of NIDS (NIDS의 비정상 행위 탐지를 위한 단일 클래스 분류성능 평가)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.15-21
    • /
    • 2018
  • In this study, we try to detect anomalies on the network intrusion detection system by learning only one class. We use KDD CUP 1999 dataset, an intrusion detection dataset, which is used to evaluate classification performance. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve relatively high classification efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data. In this study, we use one class classifiers based on support vector machines and density estimation to detect new unknown attacks. The test using the classifier based on density estimation has shown relatively better performance and has a detection rate of about 96% while maintaining a low FPR for the new attacks.

Classification of the Intrusion Tolerant Systems and Integrated Framework for Survivability Enhancement (생존성 강화를 위한 침입감내 시스템의 분류와 통합 프레임워크 제안)

  • Kim, Gi-Han;Chio, Myeong-Ryeoi;Lee, Kyung-Whan
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.295-304
    • /
    • 2003
  • Currently security researchers focus on protection of program and data from malicious users and accidents. Therefore, many firewalls and intrusion detection systems have been developed commercially. The intrusion tolerance is a new concept that is the last line of defense for the information survivability. It emphasizes availability and integrity to provide critical system services continuously even when system is compromised. In this paper, we classify current intrusion tolerant technologies from the point of view of program and data. Furthermore, we propose an integrated framework that supports intrusion tolerance of program and data.

Feature Selection Algorithms in Intrusion Detection System: A Survey

  • MAZA, Sofiane;TOUAHRIA, Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5079-5099
    • /
    • 2018
  • Regarding to the huge number of connections and the large flow of data on the Internet, Intrusion Detection System (IDS) has a difficulty to detect attacks. Moreover, irrelevant and redundant features influence on the quality of IDS precisely on the detection rate and processing cost. Feature Selection (FS) is the important technique, which gives the issue for enhancing the performance of detection. There are different works have been proposed, but a map for understanding and constructing a state of the FS in IDS is still need more investigation. In this paper, we introduce a survey of feature selection algorithms for intrusion detection system. We describe the well-known approaches that have been proposed in FS for IDS. Furthermore, we provide a classification with a comparative study between different contribution according to their techniques and results. We identify a new taxonomy for future trends and existing challenges.

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Detection of Car Hacking Using One Class Classifier (단일 클래스 분류기를 사용한 차량 해킹 탐지)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.33-38
    • /
    • 2018
  • In this study, we try to detect new attacks for vehicle by learning only one class. We use Car-Hacking dataset, an intrusion detection dataset, which is used to evaluate classification performance. The dataset are created by logging CAN (Controller Area Network) traffic through OBD-II port from a real vehicle. The dataset have four attack types. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve high efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data, which are new attacks. In this study, we use one class classifier to detect new attacks that are difficult to detect using signature-based rules on network intrusion detection system. The proposed method suggests a combination of parameters that detect all new attacks and show efficient classification performance for normal dataset.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Tri-training algorithm based on cross entropy and K-nearest neighbors for network intrusion detection

  • Zhao, Jia;Li, Song;Wu, Runxiu;Zhang, Yiying;Zhang, Bo;Han, Longzhe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3889-3903
    • /
    • 2022
  • To address the problem of low detection accuracy due to training noise caused by mislabeling when Tri-training for network intrusion detection (NID), we propose a Tri-training algorithm based on cross entropy and K-nearest neighbors (TCK) for network intrusion detection. The proposed algorithm uses cross-entropy to replace the classification error rate to better identify the difference between the practical and predicted distributions of the model and reduce the prediction bias of mislabeled data to unlabeled data; K-nearest neighbors are used to remove the mislabeled data and reduce the number of mislabeled data. In order to verify the effectiveness of the algorithm proposed in this paper, experiments were conducted on 12 UCI datasets and NSL-KDD network intrusion datasets, and four indexes including accuracy, recall, F-measure and precision were used for comparison. The experimental results revealed that the TCK has superior performance than the conventional Tri-training algorithms and the Tri-training algorithms using only cross-entropy or K-nearest neighbor strategy.

Intrusion Detection System based on Packet Payload Analysis using Transformer

  • Woo-Seung Park;Gun-Nam Kim;Soo-Jin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.81-87
    • /
    • 2023
  • Intrusion detection systems that learn metadata of network packets have been proposed recently. However these approaches require time to analyze packets to generate metadata for model learning, and time to pre-process metadata before learning. In addition, models that have learned specific metadata cannot detect intrusion by using original packets flowing into the network as they are. To address the problem, this paper propose a natural language processing-based intrusion detection system that detects intrusions by learning the packet payload as a single sentence without an additional conversion process. To verify the performance of our approach, we utilized the UNSW-NB15 and Transformer models. First, the PCAP files of the dataset were labeled, and then two Transformer (BERT, DistilBERT) models were trained directly in the form of sentences to analyze the detection performance. The experimental results showed that the binary classification accuracy was 99.03% and 99.05%, respectively, which is similar or superior to the detection performance of the techniques proposed in previous studies. Multi-class classification showed better performance with 86.63% and 86.36%, respectively.